Introduction

We present the Hotspots API, a Python toolkit for the detection of small molecule binding hotspots and application of results to structure-based drug discovery (SBDD) methods.

Motivations
- Programmatic access to algorithm and integration
- Platform for collaboration
- Pathway for productisation.

SuperStar
Using IsoStar data, interaction propensities are mapped to functional groups on the target molecule highlighting likely interactions.

Fragment Hotspot Maps
Predicts the location of small molecule binding hotspots in proteins. Weighs SuperStar by pocket burial and samples with pseudomolecular probes.

Use Cases

Tractability Assessment
1. Calculate Maps
2. Restrict to “Drug” Volume ~500 Å
3. Sort by median score value
4. Plot scores distributions

Improving Docking with GOLD
- Supports application of results to GOLD docking.
- Previous work has shown improved early enrichment when using hotspot H-bond constraints for VS.

Pharmacophore Modelling
- Pharmacophores can be created from:
 - overlaid ligands
 - a hotspot result
- Generated pharmacophore can be used to:
 - search CSD & PDB with CSD-CrossMiner
 - search ZINC with Pharmit

Global Pharmacophoric Analysis
- The work on the Hotspot API supports futures objectives.
- Using PD8 data, this project aims to map “global” pharmacophoric space of protein hotspots.
- Then, design a virtual small molecule screening library covering it.
- We aim to increase the biological relevance of screening libraries to improve HTS efficiency.

Future
- github.com/prcurran
- pcurran@ccdc.cam.ac.uk