
Solution of a structure

The way around the phase problem
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Structure solution

• Patterson methods (vector methods)

Patterson method determine directly the position of several atoms in 

the unit cell. From the position of these methods, in particular if they 

are heavy metals with many electrons, the Fourier transformation 

yields an initial, relatively reasonable set of phases.

• Direct methods

• Dual space methods 

• Charge flipping methods



Structure solution
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Patterson methods (vector methods):

The Fourier transform of the structure factors yields the electronic density distribution:

We cannot determine F, since we lack the phases. We can only measure the 

intensities I. Thus, what do we obtain, if we Fourier transform the intensities I = |F|2 ?
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Convolution of functions:
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Patterson function



Patterson function

 *)(d)()()( 2 rFTFrruruP   rr

r(r) : maximal when r is the position of an atom

r(r+u) : maximal when r+u is the position of an atom

 maximal when u is an interatomic vector

 P(u) shows thus maxima when u is an interatomic vector

The Patterson map shows maxima at 

the position of interatomic vectors.

We can construct it by placing in turn 

each atom of a structure in the origin. 

12

3
4

5

6



Patterson function

Example: (C5H5)3Sb in P21/c

n atom Z Z2 nZ2



4 Sb 51 2601 10404

60 C 6 36 2160



12564

1. Normalisation:

The calculated values are arbitrary. For this reason, the value of peak P(0,0,0) 

is set to 999. P(0,0,0) is the highest maximum possible, since every atom has 

a distance of 0 to himself. 

Since the intensity of the Patterson peaks is proportional to the product of the 

numbers of electrons in the two atoms forming the interatomic vector, we can 

calculate the theoretical intensity of each peaks, knowing that the peak 0/0/0, 

which involves all atoms in the unit cell, is set to 999.

Theoretical peak heights:

Sb-Sb: 51*51*999/12564 = 207

Sb-C: 51*6*999/12564 = 24

C-C: 6*6*999/12564 = 3

Solution using Harker peaks / “Heavy atom method”

 *)(d)()()( 2 rFTFrruruP   rr

Peak height of a single 

interatomic vector 

Theoretical peak 

height of P(0,0,0) 



Example: 

(C5H5)3Sb in P21/c

2. Harker peaks in P21/c:

General atomic positions x,y,z -x,-y,-z -x,0.5+y,0.5-z x,0.5-y,0.5+z

x,y,z -2x,-2y,-2z -2x,0.5,0.5-2z 0,0.5-2y,0.5

-x,-y,-z 2x,2y,2z 0,0.5+2y,0.5 2x,0.5,0.5+2z

-x,0.5+y,0.5-z 2x,0.5,0.5+2z 0,0.5-2y,0.5 2x,-2y,2z

x,0.5-y,0.5+z 0,0.5+2y,0.5 -2x,0.5,0.5-2z -2x,2y,-2z

Theoretical peak heights:

Sb-Sb: 51*51*999/12564 = 207

Sb-C: 51*6*999/12564 = 24

C-C: 6*6*999/12564 = 3

Intensity u v w assignment atoms

999 0 0 0 zero peak

460 0 0.396 0.5 Harker peak 2 x Sb-Sb 0,0.5±2y,0.5

452 0.420 0.5 0.705 Harker peak 2 x Sb-Sb ±2x,0.5,0.5±2z

216 0.421 0.106 0.205 Harker peak 1 x Sb-Sb 2x,2y,2z

Patterson function
Solution using Harker peaks / “Heavy atom method”

Harker peaks are interatomic vectors between symmetry-related atoms.



Example: 

(C5H5)3Sb in P21/c

Intensity u v w assignment atoms

1.  999 0 0 0 zero peak

2.  460 0 0.396 0.5 Harker peak 2 x Sb-Sb 0,0.5±2y,0.5

3.  452 0.420 0.5 0.705 Harker peak 2 x Sb-Sb ±2x,0.5,0.5±2z

4.  216 0.421 0.106 0.205 Harker peak 1 x Sb-Sb 2x,2y,2z

3. Calculation of the Sb position

peak 2: 0.5±2y = 0.396  y=0.052 or y=-0.052

peak 3: 2x = 0.420  x=0.210, z=0.103

0.5+2z = 0.705  or x=-0.210, z=-0.103 

etc.

• Can only determine the position of heavy atoms, which have remarkably 

higher intensities.

• Only applicable, when there are only few (1-2) heavy atoms (no heavy 

atom – heavy atom peaks, which are not Harker peaks).

Patterson function
Solution using Harker peaks / “Heavy atom method”



Solutions using the Patterson map
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Patterson map superposition (SHELXS)

One peak is chosen and the original Patterson map is shifted by this peak.

If two peaks superimpose, they are part of our searched structure. Since the 

Patterson function is always centrosymmetric, we obtain the structure of our 

molecule and its inverted image + all other symmetry equivalents.

A third superposition reduces it to only one 

structure and eliminates false hits. This step is not 

always done or necessary.

False hit
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Attention: Using a second shift works only when both vectors have the same 

origin!

Preferably we want to use Harker peaks.

Solutions using the Patterson map
Patterson map superposition (SHELXS)



Another problem: Patterson peaks are broader than reflections. We can thus 

have a incorrect superposition of several peaks, generating a lot of false hits.

Solutions using the Patterson map

Patterson map superposition (SHELXS)

Patterson methods work best if there are few, very heavy atoms in the structure. 

The overall number of atoms is irrelevant.



If we know a (rigid) fragment of the structure, we can look for it in the Patterson 

map:

Solution by “Patterson shift methods” (PATSEE, SIR, DIRDIF)

• Find the correct rotation (in three dimension)

• Place each atom in the origin without changing its rotation.

• The distribution of the fragments around the origin than yields the structure

Solutions using the Patterson map



Solution des structures

• Patterson methods (vector methods)

Patterson method determine directly the position of several atoms in 

the unit cell. From the position of these methods, in particular if they 

are heavy metals with many electrons, the Fourier transformation 

yields an initial, relatively reasonable set of phases.

• Direct methods

Direct methods try to establish the phases directly from the 

intensities of the reflections.

• Dual space methods 



Direct methods




 
lkh

llkkhhlkhhkl FFKF ,,

The Patterson function is helpful if we have an unequal distribution of atoms, i. e.

when a big part of the electron density is located in a small number of heavy

atoms. When the electron density is more equally distributed, direct methods are

more useful. They are called “direct”, because we need only the intensities to

determine the phases.

1948, Harker and Kasper showed that there are systematic relations between the

structure factors and the symmetry elements.

Sayre equation (1953):

Starting only with two assumptions (that the electron density is never negative and 

that it is concentrated in well defined maxima), Sayre showed that each structure 

factor can be expressed by an infinite sum over all the other structure factors:

 122001113010023100123 FFFFFFF



Triplet relationship
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The Sayre equation is important, but not useful, until Hauptman and Karle showed 

in 1953 (Nobel price 1985) how to use it for the phase determination.  

When Ehkl is strong and if there is a pair Eh’k’l’ and Eh-h’,k-k’,l-l’, where both 

reflections are also strong, then we can ignore all the other terms to obtain the 

triplet relationship S2:




 
lkh

llkkhhlkhhkl EEE ,,

H=h,k,l; K=h’,k’,l’

And for the phases:
KHKH  

We use normalized reflections E rather than F. The normalisation negates the decrease of the 

intensities with q which is caused by thermal motion. The electron density calculated from E

values is thus more focalised and the Sayre equation fits better for E than for F (assumption 

that the electron density is located in well defined centers).  

Sayre equation



Triplet relationship S2
For a centrosymmetric structure the phases can have only values of 0 or p. (This is 

due to the convention that an inversion center is always placed at the origin of the 

chosen coordinate system).

100=0

010 = 0

110=100+010=0

100=0

010 = p

110=100+010=p

100=p

010 = p

110=100+010=0

Instead of using 0 or p, the sign of the structure factor is normally used :
E100 = +

E010 = +

E110 = +

E100 = –

E010 = +

E110 = –

E100 = –

E010 = –

E110 = +



Direct methods

The determination/estimation of the initial phases in 3 steps:

A. Find some strong reflections with known phases

B. Estimate (somehow) the phases for a subset of strong reflections 

(5-10 %).

C. Determine the rest of the phases (90-95%) using the tangent 

formula.

C

strong weakReflection intensity

A

B



Known phases - Triplet S1

A triplet S1 is a special case of a triplet relationship where K=H-K :

123123246e.g.     , EEEEEE KKH 

Centrosymmetric structures: If EH is strong and EK is strong, than EH is 

always positive, independent from the phase of EK. S1 triplets are 

very useful, but unfortunately relatively rare.

The determination of phases is (theoretically) easier with centrosymmetric 

structures: each phase can have only two values: 0 or p. For non-

centrosymmetric structures all values between 0 and 2p are possible. 



Origin fixation

Non-centrosymmetric (P1):

In space group P1 we can place the origin whereever we want. This 

means that we can assign arbitrary values to three phases which fix the 

origin in a certain position. We can thus choose three strong reflections, 

which help us later with the triplet relationship and we assign the values 

of these phases.

100 = 0

010 = 0

100 = p

010 = p

100 = ½ p

010 = 3/2 p

It is important to choose three reflections, which can describe the 

reciprocal unit cell, i. e. which are not linearly dependant.



Origin fixation

 = p, E100 = –

 = 0, E200 = +

 = 0, E100 = +

 = 0,

E200 = +

0,0,0 → ½,0,0

A displacement of the origin by ½ causes an inversion for all phases which have 

an odd index in this direction. Phases of reflections with an even index are not 

affected.

Centrosymmetric space groups:

In centrosymmetric space groups, we are also at liberty to choose arbitrarily the

value for three phases. The presence of a symmetry element, however, imposes

restrictions on the phases we can choose.

The inversion center is placed by definition in the origin. Since the phases have to

obey the symmetry of the lattice, only values 0 or p are permitted for all phases.

In P-1 we have 8 inversion centers and thus 8 possible origins. Changing the

position of the origin (only possible to another inversion center) causes a phase

change in dependence of the parity of the indices hkl.



Example for fixing the origin:

Eggg are useless for fixing the 

origin.

Eugg = – (E124= –)

Egug = + (E012= +)

Eggu = – (E221= –)

A displacement of the origin by ½ causes an inversion for all phases which have

an odd index in this direction. We can thus assign arbitrary phases for three

reflections to fix the origin, but we must choose reflections so that in each

axis there is at least one odd index.

Origin ggg ggu gug guu ugg ugu uug uuu

0,0,0 + + + + + + + +

0,0,½ + – + – + – + –

0,½,0 + + – – + + – –

0,½,½ + – – + + – – +

½,0,0 + + + + – – – –

½,0,½ + – + – – + – +

½,½,0 + + – – – – + +

½,½,½ + – – + – + + –

And so we 

already 

know three 

phases!

Origin fixation
Centrosymmetric space groups:

In the table below + indicates that the phase of the reflection remains unchanged if 

the origin is moved to this position, – that the phase is inversed.

I must choose a phase, which allows to define the origin, otherwise the three

phases are linearly dependent. I can thus choose between ggu, guu, ugu and uuu

for the last phase, but not ggg, gug, ugg or ugu.



Origin fixation

Non-centrosymmetic space groups with symmetry elements:

If a symmetry element is present, it has to be placed in the origin. We treat the

fixation of the origin in the same way as for the centrosymmetric space groups,

with the only differences that the phases are not restricted to 0 and p for all

reflections, but only for a subgroup.

Example: P2 An axe C2 || b introduces an inversion

symmetry in the lattice planes h0l

(perpendicular to the C2 axis) and the

phases of Eh0l are restrained to 0 and p.

To fix the origin, we thus have to assign

the sign of two reflections Eh0l and to

assign an arbitrary value to a reflection

hkl with k0.

For example:

E201 = +   (201 = 0) 

E101 = +   (101 = 0) 

111 = ½ p

Origin g0g g0u u0g u0u

0,y,0 + + + +

0,y,½ + – + –

½,y,0 + + – –

½,y,½ + – – +

And so we 

already 

know three 

phases!



Direct methods

The determination/estimation of the initial phases in 3 steps:

• Find some strong reflections with known phases

– Triplet relationships S1

– Origin fixation (Values free to assign)

• Estimate (somehow) the phases for a subset of strong 

reflections (5-10 %).

• Determine the rest of the phases (90-95%) using the tangent 

formula.

C

strong weakReflection intensity

A

B

phases known

phases estimated

The “somehow” will be explained later 



Direct methods

The determination/estimation of the initial phases in 3 steps:

• Find some strong reflections with known phases

– Triplet relationships S1

– Origin fixation (Values free to assign)

• Estimate (somehow) the phases for a subset of strong reflections 

(5-10 %). 

• Determine the rest of the phases (90-95%) using the tangent 

formula.

C

strong weakReflection intensity

A

B

phases known

phases estimated
phases unknown



B. “Estimated” phases 

for strong 

reflections (triplets)

Triplet relationship for weak phases

A. Known 

phases How to obtain the phases 

for weak reflections ?

KHKH  

In the Hauptman and Karle approximation we can use the S2 triplet (instead of using 

the infinite sum of all triplets) to determine the phase of EH, if all three of the 

reflections EH, EK et EH-K are strong. In that case, the probability that another triplet 

relation with two strong reflections exist is relatively small. 

The majority of the reflections, however, are not strong and the Hauptman-Karle 

approximation is not valid. How can we thus determine the phases of those 

reflections?

KHKH EEE 




 
lkh

llkkhhlkhhkl EEE ,, Sayre equation



Uses of multiple triplets

Weak reflections for which we search 
the phases:

E122 = E101· E021 E112 = E101· E011

E122 = E001· E121 E112 = E121· E1-12

E122 = E011· E111 E112 = E1-11· E021

E112 = E001· E111

E102 = E001· E101

E102 = E121· E0-21

E102 = E111· E0-11

E102 = E011· E1-11

Strong reflections with 

estimated/determined 

phases:

E001 E111

E021 E011

E101 E0-11

E121 E1-11

E0-21

If the approximation is less valid for weak reflections, can we substitute 

accuracy by numbers and use multiple triplets to determine the same 

phase?

• How do we average the different values obtained ? 

• What is the reliability of each determination (error, 

standard deviation) ? 



Errors and the probability function for triplets

Less trivial: What is this error HK ? 

The validity of the Hauptman-Karle approximation S2 depends on the 

reflections EH, EK and EH-K being strong. The error HK in the 

determination of the unknown phase H depends thus on the 

intensities of the triplet, i. e. EH, EK and EH-K . 

The distribution of the error (probability function) is given by the Mises 

distribution:

HKKHKH  

  HKHKG

HK e
L

P



cos1 KHKHHK EEE

N
G  2

Mises distribution
L: Normalisation factor

N: Number of atoms

We can trivially replace the Hauptman-Karle approximation with an exact 

equation, when we introduce an error HK for the determination of the 

phase H:
H = h, k, l

K = h’, k’, l’



  HKHKG

HK e
L

P



cos1 KHKHHK EEE

N
G  2

  KHKHjjHK EEEZZG 
23232

(identical atoms)

(non-identical atoms)

Mises distribution

L: Normalisation factor

N: Number of atoms 

H: h,k,l; K: h’,k’,l’

-100 -80 -60 -40 -20 0 20 40 60 80 100

GHK=20

GHK=10

GHK=5

GHK=1

The determination of the phases is exacter (narrow error

distribution) when the intensities of the three reflection is high and

the overall number of atom N is small. For this reason there is an

upper size limit up to which structures can be solved with direct

methods (<200 atoms per asymmetric unit).

Errors and the probability function for triplets

D[deg]



Determination of phases using multiple triplets

If we use multiple triplets, the error distribution becomes:

    )cos(
)cos(

cos
HHHj

jKHjKHjHK

jHKjHK

j
AeAeeAPP

G

j

G

j

HKHK

a















22

)sin()cos( 







 








  

j
KHKHK

j
KHKHKH jjjjjj

GG a

 

 






j
KHKHK

j
KHKHK

H

jjj

jjj

G

G

)cos(

)sin(

tan






aH is a measure of the 

probability that the 

determined phase is 

correct (equivalent to GHK

for a single triplet).

H is the value of the determined

phase (The error  is zero when H

= H). It is calculated from multiple

triplets using the tangent formula.

G1 = 2/N0.5 |E102· E001·E101|

G2

001+101

H =

G3

111+0-11

aH

E102 = E001· E101011+1-11

121+0-21

E102 = E121· E0-21

E102 = E111· E0-11

E102 = E011· E1-11

102

H = h, k, l

Kj = h’j, k’j, l’j



Direct methods

The determination/estimation of the initial phases in 3 steps:

• Find some strong reflections with known phases

– Triplet relationships S1

– Origin fixation (Values free to assign)

• Estimate (somehow) the phases for a subset of strong 

reflections (5-10 %). 

• Determine the rest of the phases (90-95%) using the tangent 

formula.

C

strong weakReflection intensity

A

B

phases known

phases estimated
phases unknown



Direct methods

H=h,k,l; K=h’,k’,l’

KHKH  Triplet relationship S2

valid only if EH, EK and EH–K are strong 

1. step: Find all triplet relationships between strong reflections. (We 

will call this the “initial subset”.)

2. step: Assign (somehow) phases to these reflections, which do 

not violate the triplet relationship

• We have a number r of reflections

• We have a number n > r of equations between reflections (triplet relationships)

• How do we find the set of phases for these reflections which best agrees 

with the triplet relationships?

S2 triplets:

210 = 010 · 200

121 = 010 · 111

131 = 010 · 121

252 = 131 · 121

…

Reflections:

0 1 0 2 0 0

1 0 0 2 1 0

1 1 1 2 5 2

1 2 1 1 3 1

…

Phases:

010 = ? 200 = ?

100 = ? 210 = ?

111 = ? 252 = ?

121 = ? 131 = ?

…



Obtaining phases for the initial subset

Symbolic addition (obsolete): Unknown phases are replaced with a symbolic value.

J. Karle, I. J. Karle Acta Cryst. 1966, 21, 848; W. H. Zachariasen Acta Cryst. 1952, 5, 68.

Used in the program SIMPLE. H. Schenk (1985)

S2 triplets:

210 = 010 · 200

121 = 010 · 111

131 = 010 · 121

252 = 131 · 121

252 = 010 · 242

Phases:

010 = a 200 = b

242 = d 210 = a·b

111 = c 131 = a2·c

121 = a·c

252 = 010·242 = a·d

252 = 121·131 = a3·c2

=> d = a2·c2

…

Have fun doing this for hundreds of reflections !



Multisolution method

Permutation of values:

Centrosymmetric: Only allowed values are 0 and p. 

The phases in the initial subset are permutated through all possible 

combinations. 

Non-centrosymetric: All values between 0 and 2p are possible.

One could show that errors in the phases of 40-50° are acceptable. Often 

phases are thus permutated between values of ±½p and ±¾p. In that way, 

the error is never higher than 45°.

• First introduced in the program MULTAN
G. Germain, M. M. Woolfson Acta Cryst. 1968, B24, 91.

• Phases in the initial subset were assigned arbritrary values. These values 

were permutated to cover all possible combinations!

• Starting from this subset, all other phases are calculated with the tangent 

formula.

• The congruity of all obtained phases is expressed with a confidence factor. 

(Sum of the a values for all determined phases)

• The best solution is chosen to to calculate the initial electron density map.



Phase refinement

Developments in the multisolution method showed that it is possible to accept

larger errors in the phases, if we increase the number of reflections in the initial

subset. At the extreme of this approach, it was shown that the refinement of

arbitrary phases converges into reasonable values when the number of

reflections in the initial subset is high enough.

How to proceed:

1. Select an initial subset of strong reflections

2. Assign arbitrary values to all phases

3. Refine these values (several methods possible) to minimise : H-K-H-K=

4. Calculate a confidence factor for this solution

5. Repeat this x times and chose the best set for the expansion of the initial 

subset to all reflections with the tangent formula and for the calculation of the 

first electron density map (initial solution).

Problem: Free refinement using triplet relations refines in the uranium atom 

solution: all the phases  are zero (and thus all errors ) and the electron 

density is located in one point in the origin. 

How to avoid the uranium atom solution?



Negative quartets
Schenk introduced 1973 the quartet relationship:

HKLLKHLKHLKHLKH EEEE   

The quartet relationship can be described as the sum of two triplets (3 possibilities):
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• Thus the error HKL is zero, when all the errors ij are zero. Which means that the

“cross intensities” EH+K, EK+L, EH+L have to be strong too.

• The information gained from the quartets are weak. The possibility to find the correct

phase is proportional to 1/N (1/√N for triplet relationships; N: number of atoms).

• Empirically it was found that HKL=p if the cross intensities EH+K, EK+L, EH+L are all

weak. We call this situation a negative quartet: H + K + L + H-K-L – p = HKL

• While we do not gain any phase information from the negative quartets, adding them

to the phase refinement avoids that the refinement converges in the uranium

atom solution where all phases  refine to 0 and HKL=0.

Attention: H,K,L are here short for H=(h,k,l); K=(h’,k’,l’); …

• As for the triplet relationship, EH, EK, EL, EH+K+L have to be all strong so that the error

in determined phase HKL is zero (small).



Steps in obtaining the initial solution

1. Normalisation: Calculation of E values

2. Triplet selection:

• Selection of reflections with high |E| (strong reflections). We need appr. 10x 

the number of atoms in the unit cell)

• Found all triplet relationships EH, EK, EH-K in this subset

3. Find known phases:

• Origin fixation + enantiomorph 

• Triplets S1 (known phases in centrosymmetric structures)

• Additional reflections where the phases are known

4. Assign/calculate the phases for the initial subset:

• Symbolic addition

• Multisolution methods 

• Phase refinement



Example (Multisolution method)

Strong reflections

0 1 0

1 0 0

1 1 1

1 2 1

2 0 0

2 1 0

2 1 1

3 1 1

1. Calculate E values and find strong reflections



Example (Multisolution method)

Strong reflections:

0 1 0

1 0 0

1 1 1

1 2 1

2 0 0

2 1 0

2 1 1

3 1 1

S1 triplets:

200 = 100 · 100 = +

Origin fixation:

100 : –

010 : +

311 : –

Origine ggg ggu gug guu ugg ugu uug uuu

0,0,0 + + + + + + + +

0,0,½ + – + – + – + –

0,½,0 + + – – + + – –

0,½,½ + – – + + – – +

½,0,0 + + + + – – – –

½,0,½ + – + – – + – +

½,½,0 + + – – – – + +

½,½,½ + – – + – + + –

2. Find phases with known values

} arbitrarily chosen



Example (Multisolution method)

3. Evaluate each combination using the existing triplet relationships

Strong reflections:

0 1 0 + 1 1 1

1 0 0 – 1 2 1

2 0 0 + 2 1 0

3 1 1 – 2 1 1

S2 triplets :

210 = 010 · 200

121 = 010 · 111

311 = 200 · 111

211 = 100 · 111

S1 triplets:

200 = 100 · 100 = +

Origin fixation:

100 : –

010 : +

311 : –

010 + + + + + + + + + + + + + + + +

100 – – – – – – – – – – – – – – – –

200 + + + + + + + + + + + + + + + +

311 – – – – – – – – – – – – – – – –

121 + + + + + + + + – – – – – – – –

210 + + + + – – – – + + + + – – – –

211 + + – – + + – – + + – – + + – –

111 + – + – + – + – + – + – + – + –

121=010·111 J L J L J L J L L J L J L J L J

210=010·200 J J J J L L L L J J J J L L L L

311=200·111 L J L J L J L J L J L J L J L J

211=100·111 L J J L L J J L L J J L L J J L

Permutation 

of all possible 

combinations 

(multisolution 

method)



Example (Multisolution method)

4. Find remaining reflections using 

combinations of triplets

321 = 200 · 121 = –

321 = 210 · 111 = –

321 = 311 · 010 = –

411 = 311 · 100 = +

411 = 211 · 200 = +

KHKH EEE 

H=h,k,l; K=h’,k’,l’

KHKH  

221 = 100 · 121 = +

221 = 211 · 010 = +

Strong reflections:

0 1 0 +

1 0 0 –

1 1 1 –

1 2 1 –

2 0 0 +

2 1 0 +

2 1 1 +

3 1 1 –



In reality: more complex
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
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

In real cases, there is no single, analytical solution and not all triplets 

yield the same solution. Each calculated phase is just weighted with the 

probable error of its determination, which can be visualized using a 

vector addition, where each vector represents a phase value obtained 

from a triplet relationship.

The tangent formula allows us to combine multiple triplets and to 

calculate the resulting phase H and its probability aH.

KHKH EEE 

G1

G2

K1-H-K1

H

G3

K3-H-K3

H

Combination of 3 triplets Three weak, 

concordant 

triplets

Three weak 

contradicting 

tripletsaH



Direct methods

The determination/estimation of the initial phases in 3 steps:

• Find some strong reflections with known phases

– Triplet relationships S1

– Origin fixation (Values free to assign)

• Estimate the phases for a subset of strong reflections (5-10 %). 

– Symbolic addition

– Multisolution methods 

– Phase refinement

• Determine the rest of the phases (90-95%) using the tangent 

formula.

strong weakReflection intensity

phases known

phases estimated

phases unknown
S1 : EH = EK · EK

 

 






j
KHKHK

j
KHKHK

H

jjj

jjj

G

G

)cos(

)sin(

tan




S2 : EH = EK · EH-K



The “phase annealing” in SHELX

Instead of the standard phase refinement (generate an arbitrary set of phases, refine 

them and repeat this process x times), SHELXS uses a different method:

1. The program searches n reflections of high E.

2. Approximately half of them are chosen (u, PHAN) and their phases are refined 

starting from random start values. 

3. This phases are refined using “annealing” (malléabilisation): The phases were 

allowed to do random changes, the magnitude of which depends on a 

temperature factor which is slowly reduced. This allows the refinement to escape 

a local minimum.

How does that work ?



Refinement by thermal annealing

A simple refinement 

might, depending on 

the starting conditions, 

end in a false (local) 

minimum.

A Monte-Carlo 

refinement generates 

a large number of 

starting conditions, 

hoping that a least one 

refines into the global 

minimum.

• In an annealing procedure, the solution can move 

“uphill” according to a temperature factor.
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Refinement by thermal annealing

A simple refinement 

might, depending on 

the starting conditions, 

end in a false (local) 

minimum.

A Monte-Carlo 

refinement generates 

a large number of 

starting conditions, 

hoping that a least one 

refines into the global 

minimum.

• In an annealing procedure, the solution can move 

“uphill” according to a temperature factor.

• The temperature factor is slowly lowered, giving 

enough time for the solution to escape false minima.

• At the end the temperature factor is reduced to zero 

and the solution should collapse in the global 

minimum.



The “phase annealing” in SHELX

Instead of the standard phase refinement (generate an arbitrary set of phases, refine 

them and repeat this process x times), SHELXS uses a different method:

1. The program searches n reflections of high E.

2. Approximately half of them are chosen (u, PHAN) and their phases are refined 

starting from random start values. 

3. This phases are refined using the “annealing” (malléabilisation): The phases 

were allowed to do random changes, the magnitude of which depends on a 

temperature factor which is slowly reduced. This allows the refinement to escape 

a local minimum.

4. The u phases obtained are combined with the remaining strong reflections x=n-

u. The phases x are assigned again arbitrary values and all phases (n) are 

refined normally (without annealing), using negative quartets to avoid the 

uranium atom solution. At the end several confidence factors are calculated to 

evaluate the obtained solution. 

5. Step 4 is repeated several times (TREF, default 250), the refinement starting 

always with the same phases for u and new arbitrary phases for x reflections. 

The best solution is retained to calculate phases for the whole data set.

209 Reflections and   2238. unique TPR for phase annealing

359 Phases refined using    8388. unique TPR

579 Reflections and   16812. unique TPR for R(alpha)

2128 Unique negative quartets found,  2128 used for phase refinement



209 Reflections and   2238. unique TPR for phase annealing

359 Phases refined using    8388. unique TPR

579 Reflections and   16812. unique TPR for R(alpha)

2128 Unique negative quartets found,  2128 used for phase refinement

Chosen for 

annealing

Reflections 

with high E

random values

Phase 

annealing x times (TREF x)

Refinement
Confidence factor calculation

Best solution

Calculation of all phases using the tangent formula

The “phase annealing” in SHELX

random values

random values

Confidence factor calculation

Confidence factor calculation



Observed E .GT. 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 2.000 2.100

Number          1450  1243  1082   913   769   661   534   444   355   287

Centric Acentric    0kl      h0l      hk0      Rest

Mean Abs(E*E-1) 0.968    0.736    0.918    0.952    0.964    0.943

SUMMARY OF PARAMETERS FOR  BHG109 in P2(1)/c                                                          

ESEL Emin  1.200 Emax  5.000    DelU 0.005    renorm 0.700    axis 0

OMIT  s  4.00    2theta(lim)  180.0

INIT  nn   14    nf   16    s+  0.800    s- 0.200    wr  0.200

PHAN  steps   10   cool 0.900   Boltz 0.400   ns  209 mtpr   40   mnqr  10

TREF np      256.    nE   359 kapscal  0.900    ntan   2    wn -0.950

FMAP  code  8

PLAN  npeaks   -52    del1 0.500    del2 1.500

MORE  verbosity  1

TIME  t    9999999.

209 Reflections and   2238. unique TPR for phase annealing

359 Phases refined using    8388. unique TPR

579 Reflections and   16812. unique TPR for R(alpha)

2128 Unique negative quartets found,  2128 used for phase refinement

ONE-PHASE SEMINVARIANTS

h   k   l     E      P+    Phi

0   0   2   2.575   0.13

4   4   4   3.140   0.42

-8  10   4   2.839   0.42

4  10   0   2.304   0.50

[...]

Minimum E to use for tangent formula

Number of reflections used for phase annealing

Overall number of phases refinedNumber of cycles to 

repeat the refinement 

using new random values

?



Structure invariants

Several values do not depend on the placement of the origin, but only on the 

structure. They are called structure invariants:

1. F000 =  j : number of electrons in the unit cell

2. FHF-H = |F|2 : Intensity, does not contain the phases

3. F-H FK FH-K : triplet invariant  = -H+K+H-K

4. F-H FK FL FH-K-L : quartet invariant  = -H+K+L+H-K-L, 

analog quintet etc.

Structure semi-invariants do not change with the displacement of the origin, as 

long as it displaced to a point of identical symmetry. For example, when the origin 

is placed from one inversion center to another, E2h2k2l does not change its phase.

 = 0

0,0,0 

→ ½,0,00

0,0,0 

→ 0.25,0,00

 = 0 = p



126 Unique NQR employed in phase annealing

Phase annealing cycle:     1   Beta =  0.06279

Ralpha 0.211 0.282 0.609 0.125 0.417 0.543 0.509 0.343 0.093 0.102 0.280 0.179 0.246 0.672 0.097 0.065 0.237 0.068 0.223 0.067

Nqual  0.194 0.490 0.038 0.662 0.187 0.036-0.188-0.324 0.433 0.386-0.105-0.204-0.224 0.205 0.295 0.579-0.602 0.711-0.138 0.624

Mabs   0.787 0.729 0.588 0.913 0.663 0.608 0.616 0.682 0.979 0.924 0.729 0.825 0.764 0.565 0.942 1.047 0.757 1.063 0.774 1.046

[...]

Try    Ralpha Nqual Sigma-1 M(abs) CFOM   Seminvariants

1420309. 0.200 -0.349  0.065  0.859  0.562  -++-+ -+-++ +-++- --++- ++--- -+-+- --+-+ +-+-- +---- -++-- +++++

810089. 0.200 -0.349  0.065  0.859  0.562  -++-+ -+-++ +-++- --++- ++--- -+-+- --+-+ +-+-- +---- -++-- +++++

1953293. 0.331  0.412  0.106  0.734  2.185  -++++ ++++- ++-++ +++++ +++-- -+--- +---+ ---+- --++- --++- +++++

1377857. 0.135  0.129  0.599  0.936  1.300  -+--+ ---+- --+++ ++--+ -++-- ++--+ -+-+- +-+++ --+++ -+-++ +-+-+

597829. 0.147  0.177  0.449  0.918  1.416  -+--+ ---+- --+++ +---+ -++-- ++--+ -+-+- +-+++ --+++ -+-++ +-+-+

891993. 0.326 -0.453  0.226  0.717  0.573  -+--- ++-++ --+++ -+--+ +-+++ +---- +-++- -++-+ +-+-+ +++++ +----

265661. 0.135  0.129  0.599  0.936  1.300  -+--+ ---+- --+++ ++--+ -++-- ++--+ -+-+- +-+++ --+++ -+-++ +-+-+

1328305. 0.318  0.384 -0.077  0.738  2.098  ++++- +-+++ +--++ ---+- -+--- +---+ -+-+- ----- +-+-+ ---+- ++-+-

350069. 0.138  0.110  0.580  0.934  1.261  -+--+ ---+- --+++ ++--+ -++-- ++--+ -+-+- +-+++ --+++ ++-++ +-+-+

1750345. 0.135  0.129  0.599  0.936  1.300  -+--+ ---+- --+++ ++--+ -++-- ++--+ -+-+- +-+++ --+++ -+-++ +-+-+

363117. 0.332 -0.408  0.297  0.713  0.626  -+--- ++-++ --+++ -+--+ +-++- +-+-- +-++- -++-+ +-+-+ +++++ +-+--

1815585. 0.174 -0.170  0.355  0.912  0.783  --+-- +--++ +-+++ -+++- ++--- +--++ ++--- ++++- +++++ ----- +---+

689317. 0.285  0.210  0.274  0.752  1.631  ---+- +++++ +--++ ----- ---++ +--++ -+++- ++--+ ++++- +++-- +-+-+

1349433. 0.289 -0.108  0.214  0.746  0.997  ---+- +++-+ +--+- ----- ---++ +--++ -+++- ++-++ ++++- +++-- +-+-+

[...]

CFOM Range   Frequency

0.000 - 0.020      0

0.020 - 0.040      0

0.040 - 0.060      0

0.060 - 0.080      0

0.080 - 0.100      0

0.100 - 0.120      0

0.120 - 0.140      5

0.140 - 0.160     95

0.160 - 0.180      0

0.180 - 0.200      1

[...]

256. Phase sets refined - best is code   861549.  with CFOM =  0.1553

Random values assigned for the phases not included in phase annealing

“Number” of the solution. To 

reproduce exactly this solution, 

we can repeat the structure 

solution using the command 

TREF –1420309.

Identical solutions

Different solutions of 

the same “quality”. 

Compared the 

different signs for the 

semi-invariants.

Bad solution



Confidence factors (structure solution)
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1. Ra is the deviation of estimated and real a (triplet 

deviation). Both, correct and wrong solutions can 

have a small Ra, but only wrong solutions have a 

high Ra.


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h hhNQUAL
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a2. Confidence factor for negative quartets. 

For correct phases the value is –1, incorrect 

ones have positive values. 
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3. Triplet congruity. Correct phases have 

MABS=1.
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4. CFOM = combined figure of merit: average of all confidence factors

Probability that the phase determined by a 

triplet (or a combination of triplets) is correct. 

aH estimated (if all triplets give the same phase result)

Probability to determine the correct phase 

from a quartet relationship. 



Tangent expanded to 1450  out of 1450  E greater than  1.200

E-Fourier for  BHG109 in P2(1)/c                                                          

Heavy-atom assignments:

x       y       z    s.o.f.   Height

TI1   0.7553  0.1017  0.7720  1.0000   533.3

SI2   0.5823  0.2565  0.7807  1.0000   288.9

Peak list optimization

RE = 0.151 for  34 surviving atoms and 1450 E-values

E-Fourier for  BHG109 in P2(1)/c                                                          

Peak list optimization

RE = 0.147 for  34 surviving atoms and 1450 E-values

E-Fourier for  BHG109 in P2(1)/c                                                          

Maximum =  512.38,  minimum =  -89.73       

Peak list optimization

Observed E .GT. 1.200 1.300 1.400 1.500 1.600 1.700 1.800 1.900 2.000 2.100

Number          1450  1243  1082   913   769   661   534   444   355   287

ESEL Emin  1.200 Emax  5.000    DelU 0.005    renorm 0.700    axis 0

XS already does some 

refinement cycles using only 

the strongest E reflections.



Problem cases

1. Bad solution, unstable refinement

• Find the rest of the structure, atom by atom, during the

refinement: Delete all atoms other than the heavy atoms. Increase

PLAN to 50 and refine. Use constraints such as AFIX 56 and 66 for

cycles (Cp, phenyl).

• Find the rest of the structure without refinement:  

Delete all incorrect atoms (eventually everything other than the heavy

atoms). Put L.S. to 0 (no refinement, only calculation of the electron

densitiy map) and PLAN to 50. Refine the structure and assign newly

found, correct atoms. Repeat this until (nearly) all atoms are found.

Than try a refinement with L.S. 4.



2. Centrosymmetric structure:

No solution or bizarre disorder with two superimposed molecules. Often

caused by a slightly misplaced origin. We can solve the structure in a

non-centrosymmetric space group and transform it later back into a

centrosymmetric one. (Attention: For the back-transformation, we have to

displace the origin.) Three possibilities to do this:

1. Transformation to a non-centrosymmetric space group (change LATT x to 

LATT –x). Solve, translate (you have to know what to do), change back to 

LATT x.

2. Restart XPREP, chose a non-centrosymmetric space group. Solution, 

initial refinement and transform into a centrosymmetric space group (you 

have to know what to do).

3. Redo the centrosymmetric solution, but introduce ESEL –1 in the .ins-file. 

Displace afterwards the origin to the correct position and delete additional 

molecules (CENT – PUSH – FUSE). (This is the fastest way, but does not 

always work)

4. Use the Patterson method, dual space refinement or charge flipping.

The transformation from a non-centrosymmetric into a centrosymmetric 

space group (1. & 2.) can be done by hand (XP:PUSH) or by using PLATON.

Problem cases



3. Change the parameters for direct methods:

a) Increase TREF to TREF 5000 (or TREF 100000).

Look at the solutions: If the program finds several, different solutions with a 

comparable CFOM value, try these solutions with TREF –xxxxx (xxxxxx

numbre of the solution).

b) If the number of triplets (TPR) is < 20 times the number of reflections used, 

you can try to reduce the minimum E to accept a reflection in the initial set. 

Do this in steps of 0.1 (ESEL 1, ESEL 0.9, ESEL 0.8…)

209 Reflections and   2238. unique TPR for phase annealing

359 Phases refined using    8388. unique TPR

579 Reflections and   16812. unique TPR for R(alpha)

Try    Ralpha Nqual Sigma-1 M(abs) CFOM   Seminvariants

1465441. 0.185 -0.520  0.436  0.876  0.370  ----- +--++ +-+++ -++-- ++--- +---+ +---- ++++- +++-+ ----- +---+

1131949. 0.325 -0.577  0.484  0.729  0.464  ---+- +-+++ ++-++ --+-- ++--- ++-+- ---+- -+--- -+++- -+-++ +-+++

1975137. 0.184 -0.440  0.436  0.881  0.445  ----- +--++ +-+++ -++-- ++--- +---+ +---- ++++- +++-+ ----- +---+

Problem cases



4. Still problems ?

a) Use another space group, eventually go down to P1.

b) Verify that all data is correct (unit cell etc.)

c) Try a data set without absorption correction

d) Use the Patterson function

e) Use another program (XT, SIR, DIRDIF, etc.)

f) Test for twinning.

g) Crying and swearing does not solve a structure, but it helps nevertheless. J

Problem cases



Structure solution

• Patterson methods (vector methods)

Patterson method determine directly the position of several atoms in 

the unit cell. From the position of these methods, in particular if they 

are heavy metals with many electrons, the Fourier transformation 

yields an initial, relatively reasonable set of phases.

• Direct methods

Direct methods try to establish the phases directly from the 

intensities of the reflections.

• Dual space methods (Shake ‘n Bake, SHELXD (XM), SIR)

Alternate refinement in reciprocal (phase) space and real space 

(electron density map)



Dual space methods

Finding and refining the 

phases using the methods 

described before

Fourier transformation electron density map

Improving the electron density map 

(keeping only the strongest maxima)

Improved electron density map
Fourier transformation

New phases

Refining phases

Improved phases
Fourier transformation

electron density map

“Refine” atom positions

Improved electron density map

solution



Dual space methods

Differences to direct methods:

• Suitable for structures with more than 200 atoms (protein crystallography)

• Different solution approach (complementary)

Initial phases:

• From randomly distributed atoms (SnB, SHELXD (XM), SIR) 

• From Patterson data (SHELXD, SIR)

Phase refinement:

• By refining the tangent formula (SnB, SHELXD (XM), SIR) 

• By parameter shift (SnB, SIR)

• Using all reflections I > 3s (SnB) or only strong ones (SHELXD)

SnB : http://www.hwi.buffalo.edu/snb/Tutorial/Introduction.htm

SHELXD : http://shelx.uni-ac.gwdg.de/SHELX/shelx_de.pdf

SIR : http://www.ic.cnr.it/sir2004manual.pdf

Real space refinement:

• No real refinement. Only the strongest maxima are selected for atom positions

• SHELXD (XM) : Randomly deleting 30% of the highest maxima improves the 

solution (random omit algorithm)



Solution des structures

• Patterson methods (vector methods)

Patterson method determine directly the position of several atoms in the unit 
cell. From the position of these methods, in particular if they are heavy 
metals with many electrons, the Fourier transformation yields an initial, 
relatively reasonable set of phases.

• Direct methods

Direct methods try to establish the phases directly from the intensities of the 
reflections.

• Dual space methods (Shake ‘n Bake, SHELXD, SIR)

Alternate refinement in reciprocal (phase) space and real space (electron 
density map)

• Charge flipping methods

Charge flipping methods start with random phases and iterate by inverting 
the low density region of the electron density map.



Charge flipping methods

• Shiono and Woolfson, 1992: Setting areas of small electron density 

to 0 improves phase refinement and enables determination of 

phases from a random starting set.

• Charge Flipping: Introduced by Oszlnáyi & Sütő in 2004

Starting from random phases, the region of low electron density is 

inverted. Thus switching back between real and reciprocal space, 

correct phases emerge to match the observed intensities. Since 

regions of low electron density do not contain much structural 

information, inversion of this regions provides small perturbations 

while the overall electron density remains largely unaffected.

Charge flipping does not rely on atomicity, but only on the fact that a 

great part of the electron density map is actually zero.

It is not really understood why this works. J



Charge flipping : How does it work?

Gridpoints are defined for the electron density

• We start with a random set of phases, which is used to calculate an 
electron density map

• For grid points with electron density lower than a certain treshhold d, the 
electron density is inverted.

• Back FT yields the phases of the partially flipped density, which are used to 
restart the cycle.

|Fo| = √I
ahkl Fhkl = 

|Fo| · ahkl

+
FT r (x,y,z)

Electron density

Invert for r < d

r (x,y,z)
Flipped density

FT
ahkl|Fc| ·

|Fo| = √I



Charge flipping

Taken from : Structure Resolution by the Charge Flipping Algorithm, Gervais Chapuis

The charge flipping algorith typically has a long initiation time, fast convergence, 

followed by slow optimization to the optimum solution.

Due to the two Fourier transformations required for each iteration cycle, charge 

flipping is relatively « computer-heavy».

Charge flipping requires only one parameter, the treshhold value d. Its value, 

however, is crucial. Most programs use a dynamical treshhold, which is slowly 

reduced during refinement. 

Online demonstration at : http://escher.epfl.ch/flip/



Combining lessons learned - SHELXT

“Intrinsic phasing” (ShelXT/XT) is a derivative of dual space 

refinement, but with some very useful twists. 

Most importantly: SHELXT (XT) solves in P1 and derives the 

space group from the calculated phases. All other methods 

either rely on the observed symmetries in the reflections 

intensities or in the symmetries of the calculated electron density 

map.

George M. Sheldrick, SHELXT – Integrated space-group and 

crystalstructure determination, Acta Cryst. 2015, A71, 3–8.



SHELXT – General procedure

1. Determination of the Laue group (program input, ins-file)

2. Averaging of equivalent reflections and expansion to P1.

3. Solving in P1 by dual space refinement

4. Space group determination using the phases and averaging 

of phases and electron density map.

5. Refinement/assignment of atoms to the electron density map 

How does it work in detail?



SHELXT – Solving the structure

Assigning intial phases:

Dual space refinements typically start with random phases. XT 

will perform a Patterson solution and use the displacement 

method to get an initial atom list and thus starting phases. 

12

3
4

5
6

False hit

The Patterson method is only used to generate the initial start 

phases. This can be omitted (although it is not recommended.)

For light-atom structures the Patterson solution is most likely of 

low quality… but not worse than random phases.



SHELXT – Dual Space Refinement

Graphics adapted from Prof. Sheldrick

Calculated electron density r(r)

Searching peak maxima

Random omit (30%)

In previous dual space refinements (SHELXD/XM) it turned out to be 

advantageous to ignore a certain percentage of the observed maxima. This 

introduces a degree of randomness in the procedure and provides means to 

escape local minima. (This is roughly equivalent to the inversion of charge 

density in the charge flipping algorithm.)

Iobs + initial



SHELXT – Dual Space Refinement

Calculated electron density r(r)

Searching peak maxima + 

Random omit (30%) 

Calculation of a normalized 

mask M(r) from the maxima

New electron density from r’(r) = 

r(r)·M(r). Negative density set to 0.

This sharpens the peaks 

and suppresses the non-

peak regions

Calculation of new phases from r’(r) 

Phase refinement using tangent formula 

(optional)

Iobs + calc

Iobs + initial

Graphics adapted from Prof. Sheldrick



SHELXT – Space group determination

• After determination of the dual space refinement, the space

group is determined from the obtained phases. 

Based on work of:

• Burla, Carrozzini, Cascarano, Giacovazzo, Polidori J. Appl. Cryst. 2000, 33, 307. “Solving crystal structures in P1: 

an automated procedure for finding an allowed origin in the correct space group”

• Palatinus,van der Lee J. Appl. Cryst. 2008, 41, 975. “Symmetry determination following structure solution in P1”

• Only the phases of reflections with the best agreement between

calculated and observed intensity are used.

• Each space group imposes a certain symmetry on the phases. 

Compliance to this symmetry can be expressed by a confidence 

factor.

• What are symmetry conditions in reciprocal space, i. e. for 

reflections?

• How to define the confidence factor?

• How to find the correct origin?



SHELXT – Reciprocal space symmetry

Every symmetry operation can be expressed in the form r’ = R·r + t

• r is the location of the atom, r = (x, y, z)

• r’ is the symmetry-equivalent location

• R is symmetry matrix for rotation, inversion, or reflection at the origin

• t is the translation vector

Example: Mirror plane m in P21/m

Symmetry operator: x, ½ –y, z

Example: Screw axis 31 in P31

Symmetry operator: –y, x–y, z+1/3
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Please note: the translation vector t contains not only the translation part of screw

axes or glide planes, but also the translation necessary if the symmetry element is

not located at the origin. I. e. the mirror plane m in P21/m is located at y = 0.25.



SHELXT – Reciprocal space symmetry

For inversion symmetry, we readily know that h, k, l and –h, –k, –l are 

symmetry equivalent. But what is the symmetry-equivalent reflection 

with regard to a mirror plane at y = 0.25 or a 31 screw axis? 

Symmetry-equivalent reflections are found using the transpose of the 

rotational element of the symmetry operator R.
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real space reciprocal space

The difference between the phase f of any reflection (h, k, l) and the 

phase f’ of its symmetry equivalent (h’, k’, l’) = RT·(h, k, l) depends on 

the translation vector t. 
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SHELXT – Reciprocal space symmetry

Example: Mirror plane m in P21/m   Symmetry operator: x, ½-y, z
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• Thus, the symmetry equivalent to F222 is F2–22. The phase difference 

between these reflections is Df = 2p = 0. 

• The symmetry equivalent to F111 is F1–11. The phase difference between 

these reflections is Df = p. 



SHELXT – Reciprocal space symmetry

Example: Screw axis 31 in P31 Symmetry operator: -y, x – y, z+1/3

r’   =      R      · r +   t

Reciprocal space:
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• Thus, the symmetry equivalent to F333 is F3–63. The phase difference 

between these reflections is Df = 2p = 0. 

• The symmetry equivalent to F321 is F2–51. The phase difference between 

these reflections is Df = –2p/3. 

• In the presence of a 31 axis, the phase differences between reflections Fhkl

and Fk(–h-k)l will be 0 for l=3n.
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Another look at systematic absences

Systematic absences are caused by destructive interference of an atom

with its symmetry equivalent for certain lattice plans. For a 31 axis parallel

to c we would expect a reflection condition of l = 3n for all 00l reflections.

The same conclusion can be reached (not surprisingly) from considering

the phases. As seen on the slide before, a 31 axis enforces a phase 

difference of Df = 2/3·p·l between reflections F(h, k, l) and F(k, –h–k, l). 

If a reflection is its own symmetry equivalent, then either the phase 

difference must be zero or its intensity must be zero, since a reflection

cannot have two phases.

If F(h, k, l) = F(k, –h–k, l) (only possible for h = k = 0, i. e. 00l reflections), 

then only for l = 3n we have Df = 2/3·p·l = n·2p. For all l <> 3n, Df <> 0 

and destructive interference results. 

On the other hand, the mirror plane in P21/m caused a phase difference

of Df = p·k between F(h, k, l) and F(h, –k, l). These reflections are 

identical only for k = –k = 0 and in this case the phase difference is

always 0. The mirror plane does thus not introduce systematic absences.



SHELXT – Figure of merit

The concordance of the reflection data with the symmetry of a 

given space group is given by one single figure of merit a.

a is the sum of the squared differences between the phases of 

symmetry-equivalent reflections (q), normalized so that a = 1 

indicates random phases.
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SHELXT – Origin refinement/placement

The phase difference is dependent on the placement of the origin 

and

is only true, if the origin is placed correctly. An incorrect placement 

of the origin by Dr will add an error of 2p·(r*’–r*)·Dr to Df.

For each space group, a is thus minimized by displacing the 

origin. In centrosymmetric space groups, this can be done 

analytically. For all other space groups, a (slow) grid-based search 

is conducted to find the origin shift which minimizes a.

XT automatically calculates the Flack-x parameter (Parsons’ 

quotient) and inverts the structure if necessary.
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SHELXT – Switching to the correct space group

XT will attempt further solutions for space groups below a certain a-

treshhold (can be influenced using command line parameters):

• Averaging the obtained phases using the space group symmetry

• Assigning atoms to maxima

• Further dual-space refinement 

Atom assignment: 

• The programs attempts to use the elements provided in SFAC, but 

ignores the quantities in UNIT

• To bring the (meaningless) original electron count to scale, the program 

looks for “typical organic junk” (Sheldrick) and scales it to carbon or, 

alternatively, does the same with oxyanions of heavy metals (if present 

in SFAC).

• If this fails, the highest electron count is assigned to the heaviest 

element in SFAC.

• The rest of the electron density is assigned based on electron count.

• Some simple chemical rules are applied to avoid non-sense 

assignments. If a heavy atom is clearly present, but not specified, the 

program assigns either Br or I based on electron count.



SHELXT – Inspecting the results

Results copied from Prof. Sheldrick

With standard settings, XT uses the first plausible solution, which works in most 

cases. Sometimes, here a centrosymmetric sub-structure of the heavy atoms in a 

non-centrosymmetric space group, several proposals with similar a-values can be 

obtained (use the –a command parameter, automatically done if a heavy atom is 

present in SFAC). Here, the Flack-x parameter indicates the correct solution. (If 

the space group were indeed centrosymmetric, all solutions would have Flack-

x=0.5).
R1 Rweak Alpha Space group Flack_x File Formula

0.634 0.338 0.051 P4/mmm t240_a C35 N6 Pt96 I

0.203 0.004 0.069 P4(2)/mmc t240_b C42 N12 F6 Cl8 Pt

0.637 0.398 0.070 P4(2)/mnm t240_c C22 N8 Pt46 I

0.208 0.007 0.071 P4/mnc t240_d C38 N26 F14 Cl4 Pt

0.552 0.137 0.035 P-4m2 0.48 t240_e C59 N2 F8 Cl10 Pt67

0.165 0.004 0.051 P4mm 0.50 t240_f C83 N8 F25 Cl16 Pt2

0.168 0.004 0.053 P422 0.50 t240_g C39 N16 F14 Cl5 Pt

0.181 0.004 0.053 P-42m 0.49 t240_h C46 N16 F44 Cl12 Pt I

0.146 0.003 0.054 P4(2)mc 0.49 t240_i C41 N5 F5 Cl2 Pt

0.123 0.003 0.055 P4(2)2(1)2 0.09 t240_j C30 N6 F14 Cl2 Pt

0.139 0.003 0.056 P-42(1)c 0.47 t240_k C26 N16 F12 Pt

0.157 0.004 0.072 P-42(1)m 0.49 t240_l C41 N14 F12 Cl3 Pt

0.515 0.120 0.072 P-42c 0.46 t240_m C16 Pt68 I

0.529 0.146 0.073 P4(2)22 0.47 t240_n C20 N4 Pt58 I

0.166 0.004 0.073 P42(1)2 0.44 t240_o C48 N21 F5 Cl4 Pt

0.142 0.006 0.074 P4(2)nm 0.50 t240_p C42 N22 F12 Cl2 Pt

0.192 0.007 0.075 P4nc 0.50 t240_q C41 N22 F14 Cl9 I

0.164 0.007 0.076 P-4n2 0.49 t240_r C42 N22 F14 Cl4 Pt

If this still does not help, we have to manually inspect all the solutions proposed 

(see column File).



SHELXT and OLEX

SHELXT will generate code_x.res and code_x.hkl files for all space groups 

successfully  evaluated, with x = a, b, c… Rather unfortunately, OLEX will hide all 

these files in the hidden directory .olex/temp. There you will also find the 

SHELXT output file code.lxt. If a solution with ShelXT does not work out, check 

this directory for the output file and investigate eventually other solutions. 

While ShelXT can be run without determining the 

space group, it still requires a code.ins file to 

read the correct Laue group. Running XT in the 

wrong Laue group leads to disaster.

In theory, SHELXT could also have been programmed 

to determine the Laue group, e.g. by calculating the R 

values or correlation coefficients when the equivalent 

reflections are merged. However, the Laue group has to 

be known to scale the data, which is an essential step 

for the highly focused beams now common for 

synchrotrons and laboratory microsources, because the 

effective volume of the crystal irradiated is different for 

different reflections and needs to be corrected for. So in 

practice it is best to determine the Laue group first 

anyway.

G. M. Sheldrick, Acta Cryst. 2015, A71, 3–8.



SHELXT – Command line options

Also SHELXT does not read any instructions from a text-file (the ins-file is only 

required to determine the Laue group), it can be governed by command line 

options (which can be provided in OLEX). Possible options can be found at 

http://shelx.uni-ac.gwdg.de/SHELX/shelxt_keywords.php or at the beginning of 

the *.lxt file.

General:

-l Laue group N (SADABS code). N=15 all 

hexagonal and trigonal N=16 monoclinic with a 

unique, N=17 monoclinic with c unique

Overrides the Laue group provided in the ins-file. 

-tN use N threads, otherwise use 5 or max 

available, if less.

-d highest resolution to be employed [-d0.8]

-e fill out missing data to specified

resolution [-eX] where X is max(0.9,d-0.1) and 

d is the observed resolution



SHELXT – Command line options

Phasing:

-q structure factors Go=E^q*Fo^(1-q) [-q0.5]

-iN NGo-(N-1)Gc map in dual space recycling [-i3]

-o switch OFF Patterson superpostion (not recommended)

-kN apply random omit every kth cycle [-k3]

-fX randomly omit fraction X of atoms [-f0.3]

-z sigma threshold for P1 peak-search [-z2.5]

-uX tangent expansion for E>X after random omit [off]

-v atomic volume threshold for P1 peak-search [-v13]

-m initial number of P1 dual space iterations [-m100]

-b spread factor for atom masks [-b3]

-jX CFOM = 0.01*CC - X*R(weak) [-j1]

-y CFOM = CHEM*CC (alternative to default -j1) [off]

CC is the correlation coefficient between calculated and observed intensities. Rweak is the R 

factor based on normalized intensities. Typically a space group is evaluated by calculating a 

combined figure of merit CFOM = 0.01·CC – x· Rweak (x = 1 by default). 

An alternative approach is the use of CFOM = CHEM·CC: CHEM is the fraction of all bond 

angles (if each peak is considered an atom) which is between 95 and 135°. (Langs, D. A. & 

Hauptman, H. A. (2011). Acta Cryst. A67, 396–401.). CHEM thus adresses the “chemical 

meaningfulness” of the solution. This is might be helpful for organic or coordination 

compounds, but is by default switched off, since it is not meaningfull for purely inorganic 

compounds.

-xX accept if CFOM > X+0.01*max(20-m,0) where m is try number [-x0.65]



Structure solution methods
• Patterson methods (vector methods)

– Works only in the presence of heavy atoms

– No upper size limitation

– Normally no complete structures in initial solution

– Today practically only used for protein phasing

• Direct methods (XS)

– Works well up to 100-200 atoms / asymmetric unit

– Sometimes problems with centrosymmetric space groups

• Dual space methods (XM)

– Direct methods up to 2000 atoms

– Mainly for protein crystallography, a bit more complicated setup/use

• Dual space methods (XT)

– Most likely the replacement for XS

– No assumption for space group necessary (direct determination from phases)

– Works well with low quality data

– Severe/Whole molecule disorder (e. g. unresolved twinning) can cause problems

• Charge Flipping

– No assumptions for symmetry necessary, everything solved in P1

– Might be applicable for small proteins

– Data quality and completeness important, but works well with highly disordered or even 
modulated structures


