The shortest possible introduction into crystallography

A crystal is...
a homogenous solid formed by a repeating, three-dimensional pattern of atoms.
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The unit cell is the repeating unit with
dimensions of a, b, c and angles o, f and y. A
crystal can be described completely by
translations of the unit cell along the unit cell

axes.
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The shortest possible introduction into crystallography

There are seven types of unit cells (crystal systems).

A‘\“// Combined with centering, we obtain
b the 14 Bravais lattices.
Crystal systems: Bravais lattices:
A triclinic aP
'\ ST monoclinic mP, mC
| o=7v=90° orhorhombic oP, 0A, ol, oF
) A tetragonal tP, tl
T [ -
a=p=y=90° | trigonal/lhexagonal hP, hR
ﬁ cubic cP, cl, cF
J __\_ o P : primitive, A,B,C : face centered
| o= ﬁa_—yb_ 90 | : body centered F : (all-)face centered
| B R : rhombohedral centered
o =B =90° £
vy = 120° |
a=b - o=p=y=90°



The shortest possible introduction into crystallography

The space group is the combination of Bravais lattice + symmetry of the
crystal. Point group symmetry of a molecule does not necessarily imply that this
symmetry is also present in the crystal.
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Independent values Both distances are identical
for both distances due to symmetry




The shortest possible introduction into crystallography

The asymmetric unit is the part of the unit cell, from which the rest of the unit
cell is generated using symmetry operations. To build the complete crystal we
need only the space group and the atom positions in the asymmetric unit.
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' We have a crystal...

How do we get there ?

.. we want a structurel




Structure determination — a short overview

Determination of
the unit cell

| >

Dataset collection /
X-ray experiment

| >

Crystal Raw data Unit cell
Geometric distribution and Geometry of the repeating
intensities of reflections unit in the crystal

Determination Determination

of tgfoi%ace of the atomic
9009 positions
| > > % | >

Space group
Symmetry in the crystal




Steps in a single crystal diffraction study

 Grow a crystal

« Choose and mount a single crystal

- Collect the dataset — @

« Determine the unit cell

* Integration of the image files and data reduction e — @
« Lorentz correction
* Polarisation correction
« Absorption correction

« Other corrections (twinning etc.)

« Space group determination — @

« Structure solution G @
« Structure refinement e @

- Validation — @

* Preparation of tables and figures

« Data backup



Interaction of X-rays with matter
- Thomson scattering -
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* The interaction with an electromagnetic field induces the
oscisllation of an electron

* Being an accelerated charged particle, the electron emits
another electromagnetic wave.



Interaction of X-rays with matter
- Thomson scattering -

The intesity of the diffracted X-ray beam depends on the diffusion angle.
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For polarisation in y- direction:
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Thomson scattering
Extension to non-polarised light yields:
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» Polarisation factor P (later)

* The total percentage of the scattered light is I/, = e4/6ng,2m?c4
= 1028 per electron. Typically, crystals scatter much less than
1% of the incident beam.

* I, of neutrons is zero

* I, (protons) = 10° Iy, (electrons)

« Thomson scattering is elastic: o, = o,

« Thomson scattering is coherent: ¢, = @, + o (o = 180° pour e)



X-ray experiment

Why do we need a single crystal ?

Primary X-ray
beam

¥

Amorphous sample — diffuse reflection



X-ray experiment

Why do we need a single crystal ?

Crystalline sample — localised reflections
Amorphous sample — diffuse reflection



X-ray experiment

Why do we need a single crystal ?

Polycrystalline sample — overlapping reflections
Crystalline sample — localised reflections
Amorphous sample — diffuse reflection



X-ray experiment

Why do we need a single crystal ?

Polycrystalline sample — overlapping reflections
Crystalline sample — localised reflections
Amorphous sample — diffuse reflection



Localised reflections - Laue construction

Interactions of an X-ray beam with ordered diffracting centers

a-Cos v

The intensity Is only different from zero, when:

A=a-cosv+acospu = n-Ai



Why n-A ?
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The Laue construction in 3 dimensions
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a-cos u, +a:-cosv, = h-A
b-cos p,+ b-cosv, = kA
C:COS u. +c:cosv, = |'A

a-cos p

3 equations, 6 angles, 3 distances = too complicated



Bragg construction

Thomson diffusion is
coherent: ¢, = ¢; + 180°

Planes containing the diffracting centers

Glancing reflections at the lattice ﬁlanes hkl of the crystal, which
obey the Laue condition. The difference in pathlength is 2d,,,-sin®.

Bragg law: 2dhk|-sin9 =n-A (n=1,2,3...)

The intensity of a reflection is non-zero if the Bragg condition is fulfilled.



Miller indices of lattice planes

b=1k=1k=1

e

» The plane nearest to the origin (not the plane through the origin),
intersects the axes a, b and c at 1/h, 1/k and 1/I.

* An index of O indicates a plane parallel to an axis.
 hkl are the “Miller indices” of the lattice planes
« The higher the indices, the smaller the lattice spacing d,.




Miller indices of lattice planes

b=1lk=1=>k=1




What is 030 ?

There are no atoms in these
planes. Why do we see
reflections with them?



What is 030 ?

d 200

2d,4,-S1N0; = 3A 20 55, :SINO; = A, d550=0140/3
4 4
n reflections for each plane 1 reflection for each plane, but additional planes

Thus, we have only first order reflections, but we
have to add additional virtual hkl-planes.



Steps in a single crystal diffraction study

 Grow a crystal
« Choose and mount a single crystal
* Collect the dataset C—
« Determine the unit cell
* Integration of the image files and data reduction
« Lorentz correction
* Polarisation correction
« Absorption correction
« Other corrections (twinning etc.)
« Space group determination
« Structure solution
« Structure refinement
 Validation
* Preparation of tables and figures

« Data backup



Structure determination

Crystallisation Single crystal selection

Molecular structure: Crvstalline structure: Crystal: _
Atomic positions y ' Macroscopic
Unit cell and space group dimensions

Dataset
collection



X-ray experiment

Primary X-ray
beam

¥

Amorphous sample — diffuse reflexion



X-ray experiment

In reality it is more
convenient to move
the crystal and to
keep the X-ray
source fixed.

Amorphous sample — diffuse reflexion

Crystalline sample — reflection only if the Bragg
condition is fulfilled.



Structure determination

Cristallisation Single crystal selection

Molecular structure: Crvstalline structure: Crystal: _
Atomic positions y ' Macroscopic
Unit cell and space group dimensions

Dataset
collection

Raw data



X-ray experiment

From the position of primary
and diffracted beam:

— Orientation of the lattice
planes in the crystal
(perpendicular to the
bisecting of the two beams)

Reflection angle 0 :
— Distance between
lattice planes

Knowing the distances between lattice planes (d,,) and their
orientations, we obtain the unit cell.



Very fast: the reciprocal lattice

The distance d (dhkl) between With the reciprocal values d* = 1/d,
lattice planes can be calculated a* = 1/a. b* = 1/b. ¢* = 1/c we obtain:
from the unit cell parameters: ’ ’
*2 272 2112 2 %2
2 2 2 —
1 h k | d h“a“+kb“+I1°C
=—+—=+ _ |
d? a° b? c? Each reflection hkl can thus be described as
Horhomb a vector d* = (h k) in the reciprocal space
(orthorhombic system) formed by the basis vectors a*, b* and c*.

From the orientation of the primary and reflected beams, we obtain the direction
of d* for each reflection, from the reflection angle theta the lattice spacing d and
thus d* = 1/d. “Indexing” is the art to find a set of basis vectors a*, b*, ¢* which
allow the description of each reflection with integer values of h, k and .

» Finding the longest vectors which can
describe all reflections

A certain error must be allowed
* If necessary, move to shorter basis vectors

* From a*, b* and c*, the unit cell parameters and
the Miller indices are known.




Structure determination

Crystallisation Single crystal selection

Molecular structure: Crvstalline structure: Crystal:

Atomic positions y ' Macroscopic
Unit cell and space group dimensions

The spatial distribution of the Dataset

: . collection
reflections provide
information about the unit
cell, but not on the atomic Détermination

positions. 021 4,,0fthe unitcell

These can be obtained form
the reflection intensities.

Raw data



The structure factor F

The intensity of an X-ray beam diffracted at an hkl-plane depends on the
structure factor F,, for this reflection. The structure factor is the sum of all
the formfactors (atomic scattering factors) in the unit cell.

F—H — - —H g
Jd1oo 010
F—H -—H L
F—F F
F—H F—H F—H |
H H H
Fioo = fe + 4 Foo = T - Ty

The structure factor F,,, thus contains information on the
spatial distribution of atoms.



The structure factor F
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F=f+ f\ ) A for lattice
plan/e hkl
M Structure factor /
27r|(h Xj+k-y;+l-z)
= f, +Ccos2zA - f th 2 f. . J
— fl . eZﬂ'l A + f2 . e2n’|-A2

The structure factor F,,, depends on the spatial
distribution of the atoms or, more specifically, on their
distance to the reflection plane.



Structure determination

Crystallisation Single crystal selection

Molecular structure: Crvstalline structure: Crystal: _
Atomic positions y ' Macroscopic
Unit cell and space group dimensions
How to find F,, ? Dataset
collection

The intensities of the
reflections are
proportionel to the square Détermination
of the amplitude of the elen‘]’;rt]?; o4
structure factor: ’

| ~ |Fth|2

Raw data
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The phase problem

The value of each structure factor F,,, depends on the distribution of the atoms in
the unit cell (i. e. the electronic density). We can thus obtain this electronic density,
from the combination of all structural factors using a Fourier transformation

p(X, Y, Z) — % Z Fhkl . @27 (rky+1z)

hkl
N \ :
- _ f ] e27;|(h-xj+k.yj+l.zj) —IF ] e'““k'
hkl J hkl
j=1 The only formula you have to know by heart!
The factor F,,, takes the form of a cosinus function with an i,
amplitude |F,,,| and a phase a,,,. These two, |F| and o, Ithkll

vary for each reflection hkl and depend on the atomic positions
relative to the hkl plane.

p(X, Y, Z) = % Z‘Fhkl‘ . eiahkl . e—Zﬂi(hX+ky+Iz)

hkl



The phase problem

p(X, Y, Z) = % Z‘Fhkl‘ . eiahkl . e—Zﬂi(hX+ky+Iz)

hk

One small problem: We can determine |F, | = VI,
but we do not know the phases a,, !

FT

N
p(X,Y,7) Fo = P
N—

FT known unknown

l
e hkl




A (very) short introduction to phases

h,k,| =2,1,0; centers between planes, a,,, = 180°, strong reflection



A (very) short introduction to phases

The phase ¢ of a reflection where the atoms are situated on the
hkl planes has a phase of approximately 0% if the atoms are
found between the planes the phase is approximately 180°. For
randomly distributed atoms, we cannot predict the phase and
the reflection is weak due to strong destructive interference.

[T ]

h,k,I =0,3,0; weak reflection, ayzy = ?

Do we really need the phases?



Do we really need the phases...
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This is a model. In a structure with only one

atom, the atom is always placed at the origin.

Where do we found the
atom?

Since there is only one

Reflection on 100:
We find o = 3/27

Reflection on 010:
Wefindoa=7

Reflection on 110:
We find o = 3/4n

Yes, we need them. Because of the
Fourier transformation, the phases are
connected with the atom positions!



A duck in reciprocal space
(by Fourier transformation)

FT
—
1= ¢
FT
duck Fourier transform of

a duck

Kevin Cowtan www.ysbl.ac.uk/~cowtan/
Diapositive by G. M. Sheldrick



Combination of different amplitudes (F) and phases (¢)

>

FT

e

FT

the amplitudes of a duck are
combined with the phases of the cat

FT ;
h;f-- — J

The phases are more important
than the amplitudes!

Kevin Cowtan www.ysbl.York.ac.uk/~cowtan
Diapositive by G. M. Sheldrick



Steps in a single crystal diffraction study

 Grow a crystal
« Choose and mount a single crystal
» Collect the dataset
« Determine the unit cell
* Integration of the image files and data reduction
* Lorentz correction
* Polarisation correction
« Absorption correction
« Other corrections (twinning etc.)

« Space group determination

« Structure solution <+ [Estimation of a first set of phases
« Structure refinement <+ Refinement of the phases
 Validation

* Preparation of tables and figures

« Data backup



Solution of a structure = estimation of the phases

First estimation of phases
(Patterson, direct methodes):

Experiment

}

|Fol = I

™~

Olp

Structure
— .
solution

Fourier map
F = ET pl(X,y,Z) —
y A hkl — | Atomic
IFol - i coordinates

Manual

We want optimise:
p(XyZ) i’ Fc = “:cl Olhki

Optimisation criterium:
M =3 w(|Fo|*|Fc[?)?

confirmation

p.(X,Y,2)

Refinement

p2(X,Y,2)

Olp

TF

G—

1

The phases

pc(X,Y,2)

Manual

improve with each _ _
confirmation

cycle

Fourier map

Ap=1/IVY (F-F)e2ri(hxrky+i)

Difference Fourier map



Take-home messages

Phases cannot be determined experimentally
(Exception: synchrotron)

Our structural solution is thus a model.

The first step is the “structure solution”, a first
estimation of the phases, which we do not know.

During the refinement we improve our model by
matching experimental to calculated intensities. A
good model results in phases closer to reality.

Thus the better the model, the better the phases, the
better the resulting electron density map, the better
the model, ...

Refinement is thus a cyclical process during which
our structural model improves more and more.



