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The shortest possible introduction into crystallography

A crystal is… 

a homogenous solid formed by a repeating, three-dimensional pattern of atoms. 
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The unit cell is the repeating unit with 

dimensions of a, b, c and angles a, b and g. A 

crystal can be described completely by 

translations of the unit cell along the unit cell 

axes.
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The shortest possible introduction into crystallography

There are seven types of unit cells (crystal systems). 

Crystal systems:

triclinic

monoclinic

orhorhombic

tetragonal

trigonal/hexagonal 

cubic

Bravais lattices:

aP

mP, mC

oP, oA, oI, oF

tP, tI

hP, hR

cP, cI, cF

P : primitive, A,B,C : face centered

I : body centered F : (all-)face centered

R : rhombohedral centered

a = g = 90°

a = b = g = 90°

a = b = g = 90°

a = b

a = b = g = 90°

a = b = c

a = b = 90°

g = 120°

a = b

Combined with centering, we obtain 

the 14 Bravais lattices.



The shortest possible introduction into crystallography
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The space group is the combination of Bravais lattice + symmetry of the 

crystal. Point group symmetry of a molecule does not necessarily imply that this 

symmetry is also present in the crystal.
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Independent values 

for both distances

Both distances are identical 

due to symmetry

Pm

The unit cell contains:

two molecules

one molecule



The shortest possible introduction into crystallography
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The asymmetric unit is the part of the unit cell, from which the rest of the unit 

cell is generated using symmetry operations. To build the complete crystal we 

need only the space group and the atom positions in the asymmetric unit.
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Independent values 

for both distances

Both distances are identical 

due to symmetry

Pm



We have a crystal…

… we want a structure!

How do we get there ?



Structure determination – a short overview

Crystal Raw data

Geometric distribution and 

intensities of reflections

Dataset collection / 

X-ray experiment
Determination of 

the unit cell

Unit cell

Geometry of the repeating 

unit in the crystal

Determination 

of the space 

group

Space group

Symmetry in the crystal

Determination 

of the atomic 

positions



• Grow a crystal

• Choose and mount a single crystal

• Collect the dataset

• Determine the unit cell

• Integration of the image files and data reduction 

• Lorentz correction

• Polarisation correction

• Absorption correction

• Other corrections (twinning etc.) 

• Space group determination

• Structure solution

• Structure refinement

• Validation

• Preparation of tables and figures

• Data backup

Steps in a single crystal diffraction study
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2
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4
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Interaction of X-rays with matter

- Thomson scattering -

e-

• The interaction with an electromagnetic field induces the 

oscisllation of an electron

• Being an accelerated charged particle, the electron emits 

another electromagnetic wave.

hn hn
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For polarisation in y- direction:

The intesity of the diffracted X-ray beam depends on the diffusion angle.
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Interaction of X-rays with matter

- Thomson scattering -



Thomson scattering
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• The total percentage of the scattered light is ITh/Ii = e4/60
2m2c4

= 10–28 per electron. Typically, crystals scatter much less than

1% of the incident beam.

Extension to non-polarised light yields:

• Polarisation factor P (later)

• ITh of neutrons is zero

• ITh (protons) = 10-6 ITh (electrons)

• Thomson scattering is elastic: wTh = wi

• Thomson scattering is coherent: jTh = ji + a (a = 180° pour e-)



Amorphous sample

Primary X-ray 

beam

X-ray experiment

Why do we need a single crystal ?

→ diffuse reflection



Crystalline sample 

Amorphous sample → diffuse reflection 

X-ray experiment

Why do we need a single crystal ?

→ localised reflections



Polycrystalline sample

Crystalline sample → localised reflections

Amorphous sample → diffuse reflection 

X-ray experiment

Why do we need a single crystal ?

→ overlapping reflections 



Polycrystalline sample

Crystalline sample → localised reflections

Amorphous sample → diffuse reflection

X-ray experiment

Why do we need a single crystal ?

→ overlapping reflections 



Localised reflections - Laue construction

Interactions of an X-ray beam with ordered diffracting centers

a·cos m

a·cos n

The intensity is only different from zero, when:  

D = a·cos n + a·cos m =  n·l

au

m



Why n·l ?

I=0D = ¼ l

D = 1/3 l

D = l

I=0

I=I0



The Laue construction in 3 dimensions

au

m

a·cos m

a·cos n

a·cos ma + a·cos na =  h·l

b·cos mb + b·cos nb =  k·l

c·cos mc + c·cos nc =  l·l

3 equations, 6 angles, 3 distances  too complicated



Bragg construction

Glancing reflections at the lattice planes hkl of the crystal, which 

obey the Laue condition. The difference in pathlength is 2dhkl·sin.

Bragg law:       2dhkl·sin = n·l (n = 1, 2, 3 …)




dhkl

d·sin

Thomson diffusion is 

coherent: jTh = ji + 180°

Planes containing the diffracting centers

The intensity of a reflection is non-zero if the Bragg condition is fulfilled.



Miller indices of lattice planes

a

b

a

b

110

• The plane nearest to the origin (not the plane through the origin), 

intersects the axes a, b and c at 1/h, 1/k and 1/l.

• An index of 0 indicates a plane parallel to an axis. 

• hkl are the “Miller indices” of the lattice planes

• The higher the indices, the smaller the lattice spacing dhkl.

b = 1/k = 1  k = 1

a = 1/h = 1  h = 1



Miller indices of lattice planes

a

b

110

a

b

b = 1/k = 1  k = 1

a

b

a=1/h=1/2

b=1/k=1/1

210

a

b

a=1/0 = ∞

b=1/3

a

b

a=1/-1

b=1/1

030

110

324
a

b

c

a = 1/h = 1  h = 1

a=1/3

b=1/2

c=1/4

x

x



What is 030 ?

030

a

b

There are no atoms in these 

planes. Why do we see 

reflections with them?



What is 030 ?

2d200 ·sin2 = l, d200=d100/2

2d300 ·sin3 = l, d300=d100/3

2dn00·sin = l, dn00=d100/n

d100

11 2 2

2d100·sin2 = 2l

2d100·sin3 = 3l

2d100·sinn = n·l

2d100·sin1 = l

d200

Thus, we have only first order reflections, but we 
have to add additional virtual hkl-planes.

n reflections for each plane 1 reflection for each plane, but additional planes



• Grow a crystal

• Choose and mount a single crystal

• Collect the dataset

• Determine the unit cell

• Integration of the image files and data reduction 

• Lorentz correction

• Polarisation correction

• Absorption correction

• Other corrections (twinning etc.) 

• Space group determination

• Structure solution

• Structure refinement

• Validation

• Preparation of tables and figures

• Data backup

Steps in a single crystal diffraction study



Molecular structure:

Atomic positions
Crystalline structure:

Unit cell and space group

Crystal:

Macroscopic 

dimensions

Crystallisation Single crystal selection

Structure determination

Dataset 

collection



Amorphous sample → diffuse reflexion

Primary X-ray 

beam

X-ray experiment



Amorphous sample → diffuse reflexion 

Crystalline sample → reflection only if the Bragg 

condition is fulfilled.

In reality it is more 

convenient to move 

the crystal and to 

keep the X-ray 

source fixed.

X-ray experiment



Molecular structure:

Atomic positions
Crystalline structure:

Unit cell and space group

Crystal:

Macroscopic 

dimensions

Cristallisation Single crystal selection

Structure determination

Dataset 

collection

Raw data



From the  position of primary 

and diffracted beam: 

→ Orientation of the lattice 

planes in the crystal 

(perpendicular to the 

bisecting of the two beams)

Reflection angle  : 

→ Distance between 

lattice planes

Knowing the distances between lattice planes (dhkl) and their 

orientations, we obtain the unit cell.

180-2


 dhkl

X-ray experiment



Very fast: the reciprocal lattice
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The distance d (dhkl) between 
lattice planes can be calculated 
from the unit cell parameters:

(orthorhombic system)

With the reciprocal values d* = 1/d, 

a* = 1/a, b* = 1/b, c* = 1/c we obtain:

2*22*22*22* clbkahd 

Each reflection hkl can thus be described as 

a vector d* = (h k l) in the reciprocal space 

formed by the basis vectors a*, b* and c*.

From the orientation of the primary and reflected beams, we obtain the direction 

of d* for each reflection, from the reflection angle theta the lattice spacing d and 

thus d* = 1/d. “Indexing” is the art to find a set of basis vectors a*, b*, c* which 

allow the description of each reflection with integer values of h, k and l. 

• Finding the longest vectors which can 

describe all reflections

• A certain error must be allowed

• If necessary, move to shorter basis vectors

• From a*, b* and c*, the unit cell parameters and 

the Miller indices are known.

020

220

110

100
200

000



Molecular structure:

Atomic positions
Crystalline structure:

Unit cell and space group

Crystal:

Macroscopic 

dimensions

Crystallisation Single crystal selection

Structure determination

Dataset 

collection

Raw data

123021

311

Unit cell

H K L I s

0 0 1 134.4 12.5

0 0 2 0.2 1.2

1 1 4 52.4 2.2

Détermination 

of the unit cell

The spatial distribution of the 

reflections provide 

information about the unit 

cell, but not on the atomic 

positions. 

These can be obtained form 

the reflection intensities.



The structure factor F
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d100
d010

F100 = fF + fH
F010 = fF - fH

The intensity of an X-ray beam diffracted at an hkl-plane depends on the 

structure factor Fhkl for this reflection. The structure factor is the sum of all 

the formfactors (atomic scattering factors) in the unit cell.

The structure factor Fhkl thus contains information on the 

spatial distribution of atoms.
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Structure factor

The structure factor Fhkl depends on the spatial 

distribution of the atoms or, more specifically, on their 

distance to the reflection plane.
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D for lattice 

plane hkl



Molecular structure:

Atomic positions
Crystalline structure:

Unit cell and space group

Crystal:

Macroscopic 

dimensions

Crystallisation Single crystal selection

Structure determination

Dataset 

collection

Raw data

123021

311

Détermination 

of the 

elemental cell

Unit cell

H K L I s

0 0 1 134.4 12.5

0 0 2 0.2 1.2

1 1 4 52.4 2.2

How to find Fhkl ?

The intensities of the 

reflections are 

proportionel to the square 

of the amplitude of the 

structure factor: 

I ~ |Fhkl|
2



The phase problem
The value of each structure factor Fhkl depends on the distribution of the atoms in 

the unit cell (i. e. the electronic density). We can thus obtain this electronic density, 

from the combination of all structural factors using a Fourier transformation
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The factor Fhkl takes the form of a cosinus function with an 

amplitude |Fhkl| and a phase ahkl. These two, |Fhkl| and ahkl, 

vary for each reflection hkl and depend on the atomic positions 

relative to the hkl plane.

)(21),,(
lzkyhxi

hkl

i

hkl eeF
V

zyx hkl -  a

The only formula you have to know by heart!

|Fhkl|

ahkl



The phase problem

)(21),,(
lzkyhxi

hkl

i

hkl eeF
V

zyx hkl -  a

One small problem: We can determine |Fhkl| = √Ihkl,

but we do not know the phases ahkl !

),,( zyx hkli

hklhkl eFF
a
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FT

FT

known unknown



A (very) short introduction to phases

h,k,l = 2,3,0; Centers on planes, a230 = 0º, strong reflection

h,k,l = 2,1,0; centers between planes, a210 = 180º, strong reflection



A (very) short introduction to phases

h,k,l = 0,3,0; weak reflection, a030 = ?

Do we really need the phases?

The phase  of a reflection where the atoms are situated on the

hkl planes has a phase of approximately 0º; if the atoms are

found between the planes the phase is approximately 180º. For

randomly distributed atoms, we cannot predict the phase and

the reflection is weak due to strong destructive interference.



Do we really need the phases…

Where do we found the 

atom?

Since there is only one 

atom, Fhkl = f · eia.

3/2 

Reflection on 100: 

We find a = 3/2

Reflection on 010: 

We find a = 

Reflection on 110: 

We find a = 3/4



3/4

3/4

Yes, we need them. Because of the 

Fourier transformation, the phases are 

connected with the atom positions!This is a model. In a structure with only one 

atom, the atom is always placed at the origin.



A duck in reciprocal space

(by Fourier transformation)

FT

FT

duck Fourier transform of 

a duck

Kevin Cowtan  www.ysbl.ac.uk/~cowtan/

Diapositive by G. M. Sheldrick



Combination of different amplitudes (F) and phases ( )

FT

FT

FT

the amplitudes of a duck are 

combined with the phases of the cat

Kevin Cowtan www.ysbl.York.ac.uk/~cowtan

Diapositive by G. M. Sheldrick

The phases are more important 

than the amplitudes!



• Grow a crystal

• Choose and mount a single crystal

• Collect the dataset

• Determine the unit cell

• Integration of the image files and data reduction 

• Lorentz correction

• Polarisation correction

• Absorption correction

• Other corrections (twinning etc.) 

• Space group determination

• Structure solution

• Structure refinement

• Validation

• Preparation of tables and figures

• Data backup

Steps in a single crystal diffraction study

Estimation of a first set of phases

Refinement of the phases



Solution of a structure = estimation of the phases
First estimation of phases 

(Patterson, direct methodes):

FT
1(x,y,z) = 

Atomic 

coordinates

Manual 

confirmation

c(x,y,z)
Refinement

We want optimise: 

(xyz)            Fc = |Fc| ahkl

Optimisation criterium:

M = ∑w(|Fo|2-|Fc|
2)2

ahkl

|Fo| = √I

ahkl

2(x,y,z) D=1/V∑(Fo-Fc)e
-2i(hx+ky+lz)

Manual 

confirmation

Difference Fourier map

Fhkl = 

|Fo| · ahkl

Fhkl = 

|Fo| · ahkl c(x,y,z)

The phases 

improve with each 

cycle  

TF

TF

Experiment

Structure 

solution

FT

Fourier map

Fourier map



Take-home messages

• Phases cannot be determined experimentally 
(Exception: synchrotron)

• Our structural solution is thus a model.

• The first step is the “structure solution”, a first 
estimation of the phases, which we do not know.

• During the refinement we improve our model by 
matching experimental to calculated intensities. A 
good model results in phases closer to reality. 

• Thus the better the model, the better the phases, the 
better the resulting electron density map, the better 
the model, …

• Refinement is thus a cyclical process during which 
our structural model improves more and more.


