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The phase problem 

This is known as the crystallographic phase problem and appears to 
be impossible to solve! 

In spite of this, nowadays small molecule crystal structures can be 
solved using the Patterson function and the heavy atom method, or 
(much more often) with direct methods (probability relations involving 
phases) without significant difficulties. 

•In order to calculate the electron density we need both the phases φ 
and the intensities I of the reflections h,k,ℓ.  
•The information content of the phases is appreciably greater than 
that of the intensities.  
•In real life, it is essentially impossible to measure the phases. 



What are phases (1)? 
The electron density is obtained by Fourier transformation of the 
structure factors Fhkl:  
 
 
Fhkl are complex numbers with amplitudes F and phases φ. F is 
proportional to the square root of the measured intensity I. The 
contribution of one atom has the phase 2π(hx+ky+ℓz). The inverse 
transformation, to calculate Fhkl from ρxyz: 
 
 
can also be represented as a sum over all atoms j: 
 
 
where fj is the scattering factor of the atom j. For centrosymmetric 
structures the sine terms for x,y,z and –x,–y,–z in the summation cancel 
each other out; φ is then always 0º or 180º. In the special case of one 
atom on the origin, all phases are 0º. 

ρxyz = (1/V) ∑hkℓ Fhkℓ exp[–2πi(hx+ky+ℓz)] 

Fhkℓ =  V   ρxyz exp[+2πi(hx+ky+ℓz)] dV 

Fhkℓ =  ∑j=1 fj { cos[2π(hxj+kyj+ℓzj)]+i·sin[2π(hxj+kyj+ℓzj)] } n 



What are Phases (2)? 
Each atom xj,yj,zj in the unit cell makes a contribution with phase  
2π(hxj+kyj+ℓzj) and amplitude fj to each reflection h,k,ℓ. The total 
structure factor Fhkl is the vector sum of these contributions. The 
atoms are not really point atoms; fj also takes into account the 
electron distribution within an atom and the thermal motion.  
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fj { cos[2π(hxj+kyj+ℓzj)]+i·sin[2π(hxj+kyj+ℓzj)] } 



What are phases (3)? 

The phase φ of a reflection is determined by its relation to the origin of 
the cell. When the atoms are concentrated in planes that run through 
the origin, φ is about 0º; when they predominantly lie half-way 
between such planes, φ is about 180º. 

h,k,ℓ = 2,3,0; strong, φ = 0º 

h,k,ℓ = 2,1,0; strong, φ = 180º 

h,k,ℓ = 0,4,0; weak, φ = ? 



The Sayre equation (1952) 
The electron density (0 or Z) of a point atom structure with equal atoms 
is proportional to its square (0 or Z2). The convolution theorem leads 
then directly to the Sayre equation:  

Fh = q ∑h’ (Fh’ Fh-h’) 
q is a constant that depends on sin(θ)/λ of the reflection h (hkℓ). The 
summation is performed over all reflections h’ (h’k’ℓ’). Often Fh is 
normalized to Eh, in order to eliminate the effects of the electron 
distribution within an atom and the thermal motion. Eh corresponds to 
the structure factor of a point atom structure.    

Eh
2 =  (Fh

2/ε) / <F2/ε>resolution shell  

The statistical factor ε is usually 1, but can be larger for special 
reflection classes (e.g. 00ℓ in tetragonal space groups). 



The triplet equation 
In the Sayre equation with E instead of F:      Eh = q ∑h’ (Eh’ Eh-h’) 
one can compare the phases on the left and right hand sides for one 
reflection h’ only (instead of a summation over all reflections): 

φh = φh’ + φh-h’    (modulus 360°) 

If this were an exact equation, it would be possible to deduce all phases 
iteratively, but unfortunately it is subject to statistical fluctuations. With 
the help of suitable assumptions, for example that the structure 
consists of randomly distributed equal atoms (see the Sayre equation), 
one can deduce the probability distribution (Cochran, 1955):  

                  P(Φ ) = g exp ( 2|EhEh’Eh-h’ |cos(Φ ) / N½ ) 
where  Φ = φh – φh’ – φh-h’,  g is a normalizing factor and N is the number 
of atoms per lattice point.  It follows that the phase relations are more 
reliable for large E-values and small structures! 



The tangent formula (Karle & Hauptman, 1956) 

           ∑h’ | Eh’ Eh-h’ | sin( φh’ + φh-h’ )  
tan(φh) =  
                 ∑h’ | Eh’ Eh-h’ | cos( φh’ + φh-h’ ) 

The tangent formula, often in well disguised form, is still the key 
formula for structure solution with direct methods. This formula is 
nothing more than the standard formula to calculate the phase of a 
sum of complex numbers!  It is used to calculate the phase of the 
summation on the right hand side of the Sayre equation: 

In the calculation of the phase angle it is important to consider the 
signs of both the numerator and the denominator, so that angles can 
be calculated in the full range 0-360°. With computational brute force it 
is possible to determine small structures by applying this equation 
iteratively starting from random phases. 

The Nobel prize for chemistry 1985 was awarded to J. Karle and H. A. 
Hauptman for their contributions to direct methods. 



How does one find the minimum? 

The phase problem is really a search problem; there are various 
structures (minima) that are reasonably consistent with the tangent 
formula or related equations, including both the correct solution and 
the statistically too perfect uranium atom pseudo-solution that has all 
phases zero! 



The limits of direct methods in reciprocal space 
Conventional direct methods, using improved versions of the tangent 
formula, are computationally extremely efficient for the solution of 
structures of up to about 100 unique atoms. Small structures can 
even be solved in one or two seconds.  In spite of this, these methods 
rapidly run out of steam for larger structures, and few structures 
larger than 200 atoms have been solved in this way.  

The efficiency of the tangent formula as a search algorithm lies in its 
ability to relate phases of reflections that lie far apart in reciprocal 
space.  The weaknesses of this formula – for example the tendency to 
produce a uranium atom solution – become more serious as the 
structures get larger.  

It is necessary to restrict the phases so that they correspond to a 
chemically sensible structure. Dual-space methods are able to do this 
and can solve much larger structures (up to about 1000 atoms). 



Experimental Fo-data 
and random phases 

Reciprocal space: 
possibly refine phases, 
combine them with  Fo 

Real space:  
modify electron 

density  

FFT 
FFT 

many cycles 

Dual-space methods iterate between real and reciprocal space using  
Fast Fourier Transforms. In real space atoms may be found or (for 
example) the density ρ is replaced by –ρ if it is lower than a preset 
threshold (charge flipping).  

The dual-space iterations may be performed in the space group P1 and 
then, after the structure has been solved, the space group is 
determined (without the help of systematic absences). 

All direct methods require in practice diffraction data to atomic 
resolution (1.2 Å or better). It is not yet clear whether the atoms must 
really be resolved from one another or whether the data-to-parameter 
ratio is the critical factor.  

Dual-space methods 



Exercises 
1. For a structure in space group P1, the reflections  1 1 0  und  2 2 0  

were both strong.  What can one deduce about their phases           
(a) graphically and (b) with the help of the triplet equation? 

2. What are the phases of reflections (a) h+k+ℓ=2n and (b) h+k+ℓ≠2n 
(where n is a whole number) when there is one heavy atom at     
x=½, y=½, z=½?  

3. For a small structure in the space group P1 the reflections  1 3 2,     
4 –1 1,  5 2 3  and  6 5 5  are all very strong.  Estimate the phase of 
the reflection  6 5 5  when the phase of  1 3 2  is 40º  and the phase 
of   4 –1 1  is 270º.  Why is this prediction less reliable when  (a) the 
structure is larger or   (b) the reflection  5 2 3  is weaker? 
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