Methods in Chemistry III – Part 1 Modul M.Che.1101 WS 2010/11 – 2 *Modern Methods of Inorganic Chemistry*

Mi 10:15-12:00, Hörsaal II George Sheldrick

gsheldr@shelx.uni-ac.gwdg.de

Symmetry elements - summary

In the Schönflies system, pure rotation axes are denoted by C_N , corresponding to a rotation of 360°/N. In the Hermann-Mauguin system they are given the symbol N. Twofold axes at right angles to the principal axis change C_N to D_N ; in the H-M system they are specified directly, e.g. 222, 32 or 422.

Mirror planes perpendicular to C- or D-axes are called h, e.g. C_{2h} . Vertical mirror planes, for which the principal axis lies in the plane, are called v for C point groups (e.g. C_{2v}) and d for D point groups (e.g. D_{3d}). Note that D_{Nh} point groups also contain vertical mirror planes, but D_{Nd} do not have horizontal mirror planes. In the H-M system mirror planes are called *m*; a '1' is added before the first *m* if it is perpendicular to a single principal axis (i.e. the axis of highest symmetry), e.g. 2*mm*, 2/*m* and *mmm*.

Inversion symmetry elements

In the Schönflies system there are rotation-reflection axes S_N that combine a 360°/N rotation with a reflection in a plane at right angles to the axis. Since $S_1=C_s$ (mirror plane), $S_2=C_i$ (inversion center), $S_3=C_{3h}$ etc., only the axes S_4 , S_8 etc. (N=4n) are independent. The point group D_{2d} also includes a S_4 axis.

The Hermann-Mauguin system has rotation-inversion operators \overline{N} that combine a 360% rotation with an inversion. These axes with odd N are equivalent to both a rotation axis of order N and a center of inversion, e. g. $\overline{3}=3+\overline{1}$. For crystallographic purposes, 3/m is always written as $\overline{6}$, because the diffraction pattern exhibits hexagonal symmetry, but m is never written as $\overline{2}$.

Chiral molecules (1)

Molecules that possess no symmetry or only pure rotation axes can exist as left- and right-handed forms which cannot be superimposed on each other, e.g. the amino-acid cysteine occurs naturally as the *L*-form:

Reaction of cysteine with mild oxidizing agents (e.g. air) converts SH + HS to S—S and changes it to the amino-acid cystine. When racemic cysteine is oxidized, both the non-chiral *D*,*L*-cystine (identical to *L*,*D*-; point group $C_i=\overline{1}$) and the chiral *L*,*L*- and *D*,*D*-cystines (point group $C_2=2$) are formed. The chiral forms have the same physical properties and so cannot be separated from each other directly, but differ from the *D*,*L*-form and can be separated from it by e.g. fractional crystallization.

Chiral molecules (2)

Molecules that possess S_N axes are identical to their mirror images and thus not chiral. Molecules that do not possess any S_N axes are chiral.

One should take into account that S_2 represents an inversion center and S_1 a mirror plane. However a molecule or ion with only S_4 symmetry is also not chiral, although it possesses neither an inversion center nor a mirror plane; an example – with four asymmetric carbon atoms (!) – is:

Special point groups

A tetrahedral molecule like CCI_4 has the point group $T_d = \overline{4}3m$. When the mirror planes and S_4 axis are missing, for example for R_4Si when the ligand R is chiral, the symmetry is reduced to T=23.

Octahedral coordination like SF_6 or a cubic molecule like cubane [(CH)₈] possess the point group $O_h = m\overline{3}m$.

When the S_4 axes are removed but the four C_3 axes retained, the results are $T_h = m\overline{3}$ ($P_{12}N_{14}S_{12}^{6-}$) or O=432 (no known small molecule example, but adopted by the iron-storage protein ferritin!).

 C_{60} and $[B_{12}H_{12}]^{2-}$ possess the non-crystallographic point group $I_{h}=53m$. Many virus shells have I=532 symmetry, which gives the maximum enclosed volume per independent nucleotide used to encode the shell proteins.

Linear molecules belong either to the point group $C_{\infty\nu}$ (no further symmetry) or $D_{\infty h}$ (an infinite number of twofold axes at right angles to the main axis). Examples:

$$C_{ov}$$
: H—C \equiv N D_{oh} : H—C \equiv C—H

An example of point group *I*_h

The **C**₆₀ molecule illustrates the point group $I_{\rm h} = \overline{5}3$ m. There are 5 axes (fivefold + inversion) through the five-membered rings and $\overline{\mathbf{3}}$ axes through the six-membered rings. The twofold axes bisect three of the C-C bonds in the sixmembered rings.

Graphic by Voita Jancik

Eightfold coordination

According to the VSEPR model, eightfold coordination can either be quadratic antiprismatic or rhombic dodecahedral. In the case of $Mo(CN)_8^{4-}$ both are known, with different cations. A cube would be unfavorable.

Point groups of macromolecular complexes

Biological molecules are of course chiral, and so cannot possess S_N operators, e.g. $\overline{1} = S_2$, $m = S_1$ and $\overline{4} = S_4$. This leaves C_N , D_N , T, O and I possible point as groups. An example is the D_2 tetramer unit of glucose isomerase in solution and in the crystal (however it is probable that the biologically active unit is a dimer).

Graphic by Burkhard Heisen

Point group determination

No rotation axes: C_1 , C_i or C_s

Linear: C_{ov} or C_{oh}

Multiple threefold axes: *T*, *T*_d, *T*_h, *O*, *O*_h, *I*, *I*_h

N-fold but no perpendicular twofolds: C_N , C_{Nv} , C_{Nh} or S_{2N}

N-fold with perpendicular twofolds: D_N , D_{Nd} or D_{Nh}

h = mirror plane perpendicular to principal axis v, d = mirror planes parallel to principal axis D_{Nh} has mirror planes perpendicular and parallel to principal axis $C_i, C_{\infty h}, T_h, O_h$ and I_h possess inversion centers O and O_h possess fourfold axes I and I_h possess fivefold axes

The 32 crystallographic point groups

Schönflies	Hermann-	C ₃	3
	Mauguin	C_{3i} (S ₆	₃) 3
C ₁	1	D_3	32
C _i	1	C _{3v}	3 <i>m</i>
C ₂	2	D_{3d}	<u>3</u> m
$C_{s}=C_{1}$, m	C ₆	6
C _{2h}	2/ <i>m</i>	C _{3h}	6
C _{2v}	<i>mm</i> 2 (<i>mm</i> 2)	D ₆	622
D ₂	222	D _{3h}	<u>6</u> m2
D _{2h}	mmm	C _{6h}	6/ <i>m</i>
C ₄	4	C _{6v}	6 <i>mm</i>
S ₄	4	D _{6h}	6/ <i>mmm</i>
D_4	422	Τ	23
C_{4v}	4 <i>mm</i>	T _h	<u>m</u> 3
C_{4h}	4/ <i>m</i>	T _d	4 3 <i>m</i>
D_{2d}	4 2 <i>m</i>	0	432
D_{4h}	4/ <i>mmm</i>	O _h	m <mark>3</mark> m

Exercises

- 1. Why do virus shells usually possess a high symmetry, and why do biological macromolecules often crystallize in space groups of higher symmetry than small molecules?
- 2. Which 10 crystallographic point groups would be suitable for oligomers of chiral monomers (e.g. proteins) and how many monomers would make up the oligomers in each case?
- 3. Attempt to assign the point group of a tennis ball, taking the stripe into account but ignoring any text.