
Lesson 9

⚫ Point Group Symmetry

⚫ Hermann-Maugin Notation



Homework

− Using the monoclinic cell  calculate:

⚫ The reciprocal cell constants—lengths and angles

⚫ The angle between a and a*

⚫ The angle theta for the (2,5,2) reflection.

a=15.168 b=10.348 c=15.847 alpha=90.0
 beta-100.035 and gamma=90.0



V=abc(1-cos2β)1/2=2449.39
b*=1/b=0.096637
a*=bcsin(α)/V=bc/V=0.066949
c*=absin(γ)/V=ab/V=0.064081
α*=γ*=90° cos(β*)=-cos(β)=0.174249 β*=79.965

a·a*=1=|a||a*|cos(ang)=0.066949*15.168*cos(ang
) ang=10.02°



V=abc(1-cos2β)1/2=2449.39
b*=1/b=0.096637
a*=bcsin(α)/V=bc/V=0.066949
c*=absin(γ)/V=ab/V=0.064081
α*=γ*=90° cos(β*)=-cos(β)=0.174249 β*=79.965

a·a*=1=|a||a*|cos(ang)=0.066949*15.168*cos(ang
) ang=10.02°



|

|d*|=[h2a*2+k2b*2+l2c*2+2hka*b*cos(δ)+      
2hla*c*cos(β)+2klb*c*cos(α)]1/2=0.511704

− sin(θ)=d*λ/2 

− sin(θ)=0.511704λ/2  For Cu(1.54178) is 
23.24º

− For Mo(0.71069)=10.48º



Why the concern with symmetry

⚫ The object in forming a unit cell is to pack items 
as efficiently as possible.

⚫ First idea is to put one item in the “box”.

⚫ This does not lead to efficient packing









⚫ From the previous pictures it should be obvious 
that adding symmetry between objects improves 
the packing.

⚫ The most common symmetry item is the 
inversion center.



An Acknowledgment

⚫ We will be looking at George Sheldrick's Power 
Points from his course at the University of 
Göetingen, Germany.

⚫ Dr. Sheldrick was kind enough to let me use 
them.

⚫ George Sheldrick is one of the finest 
crystallographers in the world and the author of 
the SHELX program series that we will use 
later.



Symmetry and point groups
Although a couple of equations come in useful, the physical
basics and mathematics of crystal structure determination are
remarkably simple. The most difficult part is thinking in three
dimensions and in particular symmetry.

We will begin by looking at the symmetry of finite objects such
as molecules and crystals. The symmetry of each finite object
can be described by a self-consistent set of symmetry
operations called a point group. These symmetry elements do
indeed usually meet at a point in the middle of the object, but
they can also meet in a line. Later in the course we will extend
this to the symmetry of infinite periodic structures, which for
our purposes means the 230 possible space groups.

Symmetry in its various manifestations pervades much of
science. For example the biologically active unit of an enzyme
complex or a virus shell often achieves efficiency with the help
of surprisingly high symmetry.



Symmetry elements
The molecule H2O possesses a C2 rotation

axis along the angle bisector and two mirror

planes that intersect each other along the

rotation axis. The point group is called C2v or

2mm. Each combination of two of these

elements would generate the third.
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The molecule NH3 possesses a C3 rotation

axis and three mirror planes that intersect

one another along the rotation axis. The point

group is called C3v or 3m.



Combination of symmetry 

elements
The combination of two symmetry elements always gives rise to

a third, for example the combination of mirror plane and a

twofold axis in the plane in C2v creates another mirror plane

perperdicular to the first (hence the alternative name 2mm).
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If there are two twofold axes I and II at right

angles to one another, they create a third at

right angles to both. The axis I transforms

point a (the ‘+’ means that it is above the

plane of the drawing) to point b. The axis II

transforms b to c, and it will be seen that a

and c are related by a new twofold at right

angles to both the other twofolds.

In a similar way, a twofold (or higher even symmetry axis, e.g.

fourfold) at right angles to a mirror plane automatically

generates a center of symmetry.



Schönflies and Hermann-Mauguin
The Schönflies system is mainly used by spectroscopists and

the Hermann-Mauguin system mainly by crystallographers.

Both systems have their idiosyncracies. An inversion center is

called ”i” (S) or 1 (H-M). When a vertical main rotation axis is

present, vertical mirror planes are called “v” (S) or “m” (H-M);

horizontal mirror planes are “h” (S) or “/m” (H-M). An N-fold

rotation axis is referred to as CN (S) or N (H-M).

There is always a 1:1 correspondence between the Schönflies

and Hermann-Mauguin point groups. For example:

C1=1; C2=2; C3=3; C4=4; Ci=1; Cs=m; C2v=2mm; C2h=2/m

[Cs can also be called C1v and 2mm can be called mm2].



A comment

⚫ One problem with the H-M notation is the bar on 
top of a number.

⚫ This is read as n-bar where n is a number.

⚫ This is very hard to produce with a word 
processor and frequently the bar is missing 
producing an incorrect symmetry label.

⚫ Sometimes written as -n to solve this problem

⚫ On the following you need to look for the -



Schönflies and Hermann-Mauguin (cont.)
The Schönflies and Hermann-Mauguin systems are less similar when

there is a twofold rotation axis at right angles to the main axis. It is

denoted by D instead of C (S) or by a ‘2’ after the symbol for the main

axis (H-M).

e.g. D2=222, D3=32, D4=422.

The H-M system is a little confusing here. The third ‘2’ is always given

in ‘222’ and ‘422’ although it is generated by the action of the other

two symmetry elements, but in the case of ’32’ it is left out. The

reason is that in ’32’, the (two) extra twofold axes

generated by the action of the threefold axis

on the first twofold are identical to it by

symmetry, whereas in 222 and 422 this is not

the case (!).

C2 C4

C2
C2 C2



Further D point groups (1)
A point group DN possesses both a CN axis and twofold axes

perpendicular to it. If vertical mirror planes are also present

(between the twofold axes) but there are no horizontal mirror

planes, the point group is called DNd. If both vertical and

horizontal mirror planes are present, it is called DNh.

Examples:

O      O

O     Fe     O

O      O 

[Fe(ox)3]
3–

D3=32

F

F

F       P 

F

F
PF5   

D3h=6m2

C6H12 (cyclohexane)   

D3d=3m

CH2

H2C                 CH2

H2C

CH2H2C



Further D point groups (2)
Whereas D2d possesses a primary axis – the two mirror planes intesect

along the ‘vertical’ axis - in D2h=mmm there are three twofold axes

each perpendicular to a mirror lane, so that none of the three

directions is special. B2Cl4 can adopt either of these point groups,

depending on whether the structure is determined in the gas phase or

in a crystal:

B2Cl4  (crystal) 

D2h=mmm

Cl               Cl

B

B

Cl  Cl

B2Cl4 (gas)  

D2d=42m

Cl                         Cl

B           B

Cl                         Cl



Inversion symmetry elements
In the Schönflies system there are rotation-reflection axes SN

that combine a 360º/N rotation with a reflection in a plane at

right angles to the axis. Since S1=Cs (mirror plane), S2=Ci

(inversion center), S3=C3h etc., only the axes S4, S8 etc. are

independent. The point group D2d also includes a S4 axis.

The Hermann-Mauguin system has rotation-inversion axes N

that combine a 360º/N rotation with an inversion. These axes

with odd N are equivalent to both a rotation axis of order N and

a center of inversion, z.B. 3=3+1. For crystallographic purposes,

3/m is always written as 6, because the diffraction pattern

exhibits hexagonal symmetry, but m is never written as 2.

+                                      – –

– – +                +

+                                      – –

+

+

S4=4                                         S8=8



Note

• -6 (6 bar) is the same as S
3

• -3(3 bar) is the same as S
6



Symmetry elements - summary
In the Schönflies system, pure rotation axes are denoted by CN,

corresponding to a rotation of 360°/N. In the Hermann-Mauguin

system they are given the symbol N. Twofold axes at right

angles to the principal axis change CN to DN; in the H-M system

they are specified directly, e.g. 222, 32 or 422.

Mirror planes perpendicular to C- or D-axes are called h, e.g.

C2h. Vertical mirror planes, for which the principal axis lies in

the plane, are called v for C point groups (e.g. C2v) and d for D

point groups (e.g. D3d). Note that DNh point groups also contain

vertical mirror planes, but DNd do not have horizontal mirror

planes. In the H-M system mirror planes are called m; a ‛/‛ is

added before the first if it is perpendicular to a single principal

axis, e.g. 2mm, 2/m and mmm.



Chiral molecules (1)
Molecules that possess no symmetry or only pure rotation axes

can exist as left- and right-handed forms which cannot be

superimposed on each other, e.g. the amino-acid cysteine

occurs naturally as the L-form:

H CH2SH HSCH2 H

C L-cysteine C D-cysteine

–OOC NH3
+ –OOC NH3

+

Reaction of cysteine with mild oxidizing agents (e.g. air)

converts SH + HS to S S and changes it to the amino-acid

cystine. When racemic cysteine is oxidized, both the non-chiral

D,L-cystine (identical to L,D-; point group Ci=1) and the chiral

L,L- and D,D-cystines (point group C2=2) are formed. The chiral

forms have the same physical properties and so cannot be

separated from each other directly, but differ from the D,L-form

and can be separated from it by e.g. fractional crystallization.



Chiral molecules (2)
Molecules that possess SN axes are identical to their mirror

images and thus not chiral. Molecules that do not possess any

SN axes are chiral.

One should take into account that S2 represents an inversion

center and S1 a mirror plane. However a molecule or ion with

only S4 symmetry is also not chiral, although it possesses

neither an inversion center nor a mirror plane; an example –

with four asymmetric carbon atoms (!) – is:

CH3

H

H                    N+                   

CH3

+

S

S

R
R

view from the left

S

S

R

R

H

CH3 N 

CH3

H



Special point groups
A tetrahedral molecule like CCl4 has the point group Td=432.

When the mirror planes and S4 axis are missing, for example for

R4Si when the ligand R is chiral, the symmetry is reduced to

T=23.

Octahedral coordination like SF6 or a cubic molecule like

cubane [(CH)8] possess the point group Oh=m3m.

When the S4 axes are removed but the four C3 axes retained,

the results are Th=m3 (P12N14S12
6–) or O=432 (no known

molecular example, but adopted by the iron-storage protein

ferritin!).

C60 and [B12H12]
2–possess the non-crystallographic point group

Ih=53m. Many virus shells have I=532 symmetry, which gives

the maximum enclosed volume per independent (chiral) amino-

acid used to make the shell.



Eightfold coordination
According to the VSEPR model, eightfold coordination can either be

quadratic antiprismatic or rhombic dodecahedral. In the case of

Mo(CN)8
4– both are known. with different cations. A cube would be

unfavorable.

D2d = 42m

D4d = 82m

Oh = m3m



Point groups of macromolecular 

complexesBiological macro-
molecules are of
course chiral, and so
cannot possess SN

operators, e.g. 1, m
and S4. This leaves
CN, DN, T, O and I as
possible point
groups. An example
is the D2 tetramer unit
of glucose isomerase
in solution and in the
crystal (but it is
probable that the
biologically active
unit is a dimer).

Graphic by Burkhard Heisen



The 32 crystallographic point groups
Schönflies Hermann-

Mauguin
C1 1

Ci 1

C2 2

Cs=C1v m

C2h 2/m

C2v mm2 (mm2)

D2 222

D2h mmm

C4 4

S4 4

D4 422

C4v 4mm

C4h 4/m

D2d 42m

D4h 4/mmm

C3 3

C3i (S6) 3

D3 32

C3v 3m

D3d 3m

C6 6

C3h 6

D6 622

D3h 6m2

C6h 6/m

C6v 6mm

D6h 6/mmm

T 23

Th m3

Td 43m

O 432

Oh m3m



HOMEWORK
• Why do biological macromolecules often crystallize in space groups

of higher symmetry than small molecules?

• How many different isomers could exist for (a) [en2CoCl2]
+ and (b)

[en2Co(Cl)2Coen2]
4+ (en = ethylene diamine, can bridge only cis-

positions), what are their point groups (in both systems), and which

of them are optically active? How could racemates containing such

ions be resolved into optically pure components?

• Which symmetry elements are present in the following, and to

which point groups (in both systems) should they be assigned: (a)

S8, (b) ferrocene (C5H5)2Fe, rings parallel and eclipsed, (c) ferrocene,

staggered?


