
Lesson 20

⚫ Solving the structure

− Getting a good login

− The Phase Problem

− Charge Flipping



Exercises
• Find the 11 enantiomorphic pairs

of space groups (hint: all are of

course chiral and possess 3N, 4N or

6N axes).

• P31/P32 P41/P43 P61/P63

• P41212/P432121 P4122/P4322

• P3112/P3212 P3121/P3221 P62/P64

• P6122/P6322 P6222/P6422

• P4132/P4332

• The incomplete picture should

show the space group I41. Why is

there no space group I43? The I

creates a 43 in the cell
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3. Assign the space group of a tetragonal crystal with the systematic absences:

hkℓ, h+k+ℓ = 2n; hk0, h = 2n or k = 2n; hhℓ, 2h+ℓ = 4n I41/a



Electron Density in Crystals

⚫ Since the crystal is made up of repeating unit 
cells, the electron density in the cell must be 
periodic!

⚫ This is called the Charge Density Wave.

⚫ In 1-dimension, the length of the charge 
density wave is the cell length.



The phase problem

This is known as the crystallographic phase problem and

would appear to be impossible to solve!

In spite of this, small molecule structure are solved routinely

these days, usually without serious problems, with the help of

the Patterson function and the heavy atom method, or (more

commonly) by so-called direct methods based on probability

relations involving phases.

•In order to calculate an electron density map, we need both the

intensities (|F | is proportional to the square root of I) and the

phases  of the X-ray reflections hkl.

•The information content of the phases is significantly greater

than that of the intensities.

•It is unfortunately not normally possible to determine the

phases experimentally.



The structure factor F and the electron density 

Fhkℓ = 
V 
xyz exp[+2i(hx+ky+ℓz)] dV

xyz = (1/V) hkℓ Fhkℓ exp[–2i(hx+ky+ℓz)]

Fhkℓ and xyz are related to each other by means of these Fourier

transformations. The electron density  is real and positive, but the

structure factor F is a complex number: to calculate the electron

density from the structure factors, we also need the phase ( ) of F.

Under normal conditions we can only measure the diffracted intensities

I and not the phase  of a reflection h,k,ℓ, so it appears that we are

faced with an insoluble problem, the crystallographic phase problem.

Ihkℓ is proportional to |Fhkℓ |2



What are phases (1)?
The electron density is obtained by Fourier transformation of the

structure factors Fhkl. Fhkl are complex numbers with amplitudes and

phases.

The reciprocal transformation to calculate Fhkl from xyz:

can also be represented as a sum over the n atoms in one unit-cell:

where fj is the scattering factor of atom j (including thermal motion). If

the structure is centrosymmetric, the sine terms for x,y,z and –x,–y,–z

cancel, with the result that the phase of Fhkl must be 0º or 180º. In the

special case of one atom on the origin, all phases must be 0º.

xyz = (1/V) hkl Fhkl exp[-2i(hx+ky+lz)]

Fhkl =  
V
xyz exp[+2i(hx+ky+lz)] dV

Fhkl =  
j=1

fj exp[+2i(hxj+kyj+lzj)]     or
n

Fhkl =  
j=1

fj { cos[2(hxj+kyj+lzj)]+i·sin[2(hxj+kyj+lzj)] }
n



Correct Phasing



Incorrect Phasing



How to know correct phasing

• The electron density is always greater or 
equal to zero

• The electron density is highly localized at the 
atom positions.

• Since the distance between maxima 
represents bond distances, the peaks should 
be distinct.



Approaches to Structure Solution

⚫ The process of overcoming the phase problem 
is referred to as structure solution.

⚫ There are several approachs

– Directly Determine a set of consistent phases 
by using probability relations—direct methods

– Try to correctly place at least 15% of the density 
within the cell—Heavy atom methods

– Some combination of the two

– Charge flipping



Charge Flipping

This is the newest method (G. Oszlányi and A. Süto,   Acta Cryst.  
(2004). A  60  , 134-141     )  

This is an ab initio method that does not require the formula or space
group

The method is done as follows
 1.  Assign arbitrary phases to the observed data

    2. Do a Fourier Transform to electron density space
 3.Change the sign of any density which is less than some value

delta (note: cannot use initially zero for delta as it will converge to a
false solution)
    4. Do a Fourier Transform to calculate data.
    5. Apply the calculated phases to the observed data

 6. Go to step 2.



Incorrect Phasing



Charge Flipping

⚫ Advantages

− Do not need either the space group or the formula

− Very easy to program and understand

⚫ Disadvantages

− Very slow –two Fourier Transforms/cycle

− Badly effected by noise (weak) data.

− Provides the electron density in the entire cell—
must then figure out the space group and element 
assignments to proceed.



PLATON

⚫ Charge flipping is programmed in PLATON a 
crystallographic tool box program

⚫ PLATON is written by Antony (Ton) Spek at the 
University of Utrecht in the Netherlands

⚫ PLATON is free for academics and is available 
for WINDOWS and LINUX.

⚫ PLATON is used for graphics, analysis, and 
other functions.  It will be used for many 
operations in this course.



Superflip

The program superflip in its Shelx equivalent 
version has been incorporated into the solve 
gui.

This program is very fast as it uses extremely 
efficient Fourier transform methods.

The current software to mate it to the Purdue 
package is in the beta state and may have 
errors.



Direct Methods

⚫ This is an attempt to create a consistent set of 
phases starting with a few arbitrary phases

⚫ Makes use of several features of the electron 
density

− Density is always positive

− Density is localized

− The average density is close to zero



Kasper-Harker Inequality

F
000

is simply the sum of all the electrons in the 
unit cell.  This is F for the beam at Ө=0°

The unitary structure factor u
hkl

is defined as          
u

hkl
=F

hkl
/F

000

u will be 1 if every atom in the unit cell is 
scattering in phase.

Obviously most u values are much less than 1



In 1948 Kasper and Harker published the 
following inequality

u2
hkl

1/2 + 1/2u
2h,2k,2l

This means that if both u
hkl

and u
2h,2k,2l 

are both large 
that it is probable that the sign of u

2h,2k,2l  
is +

Kasper-Harker Inequality



u2
hkl

1/2 + 1/2u
2h,2k,2l



What is the big deal

This suggests that it is possible to determine 
something about the phases from intensity 
information.

By itself the Kasper-Harker inequality is useless 
as there are very few cases where the two 
needed reflections are both strong.



FT-NMR

⚫ The wavelength domain of an NMR has 
properties similar to that of real space electron 
density.

⚫ Try to see what we can see in the fid that is like 
x-ray data and how we might learn something 
from it.

⚫ Unlike an NMR fid the x-ray data is unsigned 
and not continuous



FID



FID Analysis

⚫ It is clear that the  extremes are the key.

⚫ If the maximum is located then it can be 
assumed the data nearest to it share the same 
sign.

⚫ However finding the extremes is more difficult 
than just finding the largest absolute values.  
Since the intensity falls off with time (or theta for 
x-rays) the largest values are not always a 
maximum



How to Find Intense Data

⚫ If the expected value at a particular time (theta) 
can be found then data that are very much 
larger than the expected value suggest they are 
near a maximum.

⚫ For the x-ray case the expectation value can be 
found for a particular theta from                             
<f>=kЄ Σf

i
2 exp(-2Bsinθ2/λ2)

⚫ This is equivalent to placing all the electrons in 
the cell in one average density



⚫ kЄ Σf
i
2 exp(-2Bsinθ2/λ2)

⚫ What are the symbols.

⚫ The f's are the scattering factor for each atom 
which is summed over all the atoms in the cell.  
This requires at least an estimate of the formula 
and Z must be provided!!  If the formula is way 
off then the expectation value will be incorrect.

⚫ B is the isotropic adp

k is the scale factor 

Є is a scaling factor for some classes of 
reflections



Scale Factor

⚫ Obviously the calculated values for F (the 
corrected square root of the  intensity of a given 
reflection) depends only on  the structure.

⚫ The observed data depends on the size of the 
crystal, the intensity of the x-ray beam, etc.

⚫ To compare observed vs calculated data there 
needs to be a scale factor that places the 
observed data on the same scale as the 
calculated data



Initial Values of B and k

⚫ To calculate the expectation value both B and k 
are needed.

⚫ These can be calculated from a Wilson plot—
see Massa for details.

⚫ Note B is calculated from the linear slope of a 
function that is anything but linear.

⚫ Bad values of B can badly effect direct methods 
results!



E's

⚫ The real intense data can be located by dividing 
the observed value of F by the expectation 
value at that theta.

⚫ The result are called normalized structure 
factors and are given the symbol E.

⚫ After the E's are calculated they are 
renormalized so that the average value of E is 
1.0

⚫ Therefore E>1.0 are strong reflections.



The Sayre equation 

(1952)

In the same issue of Acta Crystallographica in 1952, Sayre, Cochran

and Zachariasen independently of each other proposed phase

relations that could be summarized with the equation:

Fh = q h’ (Fh’ Fh-h’)

This is known today as the Sayre equation. q is a constant that

depends on sin()/ of the reflection h (hkl). The summation is

performed over all reflections h’ (h’k’l’). For a structure with equal

point atoms, the electron density is proportional to its square. The

convolution theorem then leads directly to the Sayre equation. This

equation is under these conditions an exact relationship, provided

that the summation is performed over all reflections, including F000

(which can not normally be measured).



Normalized structure factors
Direct methods turn out to be more effective when the observed

structure factors Fh are modified to allow for the effects of the

electron distribution within an atom and its thermal motion. The

resulting normalized structure factors Eh correspond to the structure

factors of a point atom structure.

Eh
2 =  (Fh

2/) / <F2/>resolution shell

The statistical factor  is usually 1, but can be greater for special

reflection classes (e.g. 4 for 00l in tetragonal space groups). <F2/>

can either be calculated directly or modeled with the help of an

exponential function (Wilson plot).



The triplet relation
For the Sayre equation with E instead of F:

Eh = q h’ (Eh’ Eh-h’)

one can compare the phases of the left and right sides for a single h’

contribution instead of a summation:

h = h’ + h-h’    (modulo 360°)

If this equation were exact, it would be possible to use it to derive all the

phases from a small number of starting phases. However it should be

understood in a statistical sense. Starting from suitable assumptions,

for example that the structure consists of equal, randomly distributed

atoms, it is possible to derive a probability distribution for this equation

(Cochran, 1955):

P( ) = g exp( 2|EhEh’Eh-h’ |cos( )/N½ )

where  = h – h’ – h-h’, g is a normalizing factor and N is the number

of atoms in the corresponding primitive unit-cell. It follows that the

phase relations are more reliable for small structures and for the largest

E-values!



The tangent formula (Karle & Hauptman, 1956)

h’ | Eh’ Eh–h’ | sin( h’ + h–h’ ) 

tan(h) = 

h’ | Eh’ Eh–h’ | cos( h’ + h–h’ )

The tangent formula, often in a well disguised form, is still the key

formula for the solution of structures by direct methods. The formula

is nothing more than the standard method of calculating the phase of

a sum of complex numbers; it is used to calculate the phase of the

sum represented by the Sayre equation:

In the calculation of the phases, the signs of the numerator and

denominator must both be taken into account, so that the resulting

angle is in the full range 0–360°. With sufficient number crunching

power it is possible to solve small structures starting from random

phases by repeated application of this equation.

The Nobel prize for chemistry for 1985 was awarded to J. Karle and

H. A. Hauptman for their contributions to direct methods.



How can one find the 

Minimum?

The phase problem is really a search problem; there are various

structures (minima) that are reasonably consistent with the tangent or

related equations, including both the correct solution and the

statistically too perfect uranium atom pseudo-solution which has all

phases zero!



The limits of direct methods in reciprocal space

Conventional direct methods, using improved versions of the tangent

formula, are computationally extremely efficient for the solution of

structures of up to about 100 unique atoms. Small structures can

even be solved in one or two seconds. In spite of this, these methods

rapidly run out of steam for structures larger than about 200

independent equal atoms, and few structures larger than 200 atoms

have been solved in this way.

The efficiency of the tangent formula as a search algorithm lies in its

ability to relate phases of reflections that lie far apart in reciprocal

space. The weaknesses of this formula – for example the tendancy to

produce a uranium atom solution – become more serious as the

structures get larger. It is necessary to constrain the phases in some

way so that they correspond to a chemically sensible structure.

All such direct methods require data to a resolution of 1.2 Å or better

(atomic resolution). Whether this is because the atoms have to be

resolved from each other, or simply because the data to parameter

ratio needs to be high enough, is not clear.



Direct Methods in Practice

⚫ Calculate the E's

⚫ Try to find a few reflections that can be used to 
produce the entire data set.

− The parity groups of these reflections are important

− eee, eeo, eoe, oee, ooe, oeo, eoo, ooo

− Some programs normalize E's so that each parity 
group's average is 1.0

⚫ Arbitrarily assign phases to these starting 
reflections and expand to derive as many 
phases as possible.



A Problem

⚫ This approach produces many possible 
solutions.  Obviously most are not correct.

⚫ How can the quality be evaluated.

⚫ Do a Fourier Map on the E's and analyze this 
for chemical correctness.  This is way to slow.

⚫ Check on consistency 

− do the expanding set of phases suggest common 
phases on other data

− do the phases predict the weak relfections are weak



FOM

⚫ The indicator used is the FOM –Figure of Merit.

⚫ Its value depends on the program used.  

⚫ Need some familiarity with the individual 
program to have a feel for what good values are 



Programs

⚫ MULTAN –original program rarely used 
anymore

⚫ SHELXS – part of SHELXTL –FOM should be 
as small as possible usually much less than one

⚫ The Sir programs

− SIR2002

− SIR2004  Typically FOM is greater than 3 but since 
this package is so automatic user does not even 
notice.



random starting 

phases

reciprocal space:

refine phases
real space: assign 

peaks to atoms

SF-calculation

FT

many cycles, E > Emin

When the figures of merit indicate a good solution, it can be extended

to the full structure by using all the data. Dual space methods were

first implemented in the computer program Shake and Bake, and later

in other programs. In this way it is possible to solve structures

containing up to about 1000 independent atoms (not counting H).

Atomic resolution is however still necessary.

Weeks, Miller, DeTitta, 

Hauptman et al. (1993)

Dual space 

methods


