Lesson 20

« Solving the structure
- Getting a good login
- The Phase Problem
- Charge Flipping



Exercises

« Find the 11 enantiomorphic pairs
of space groups (hint: all are of
course chiral and possess 3, 4, or
6, axes).
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« The incomplete picture should
show the space group/l41. Why is / / /
there no space group 14;5?

. Assign the space group of a tetragonal crystal with the systematic absences:
ke, h+k+€ = 2n: hkO, h =2nork =2n: hhe, 2h+€ = 4n



Electron Density in Crystals

« Since the crystal iIs made up of repeating unit
cells, the electron density in the cell must be
periodic!

 This is called the Charge Density Wave.

. In 1-dimension, the length of the charge
density wave Is the cell length.



The phase problem

In order to calculate an electron density map, we need both the
Intensities (|F | is proportional to the square root of I) and the
phases ¢ of the X-ray reflections hkl.

*The information content of the phases is significantly greater
than that of the intensities.

It Is unfortunately not normally possible to determine the
phases experimentally.

This i1s known as the crystallographic phase problem and
would appear to be impossible to solve!

In spite of this, small molecule structure are solved routinely
these days, usually without serious problems, with the help of
the Patterson function and the heavy atom method, or (more
commonly) by so-called direct methods based on probability
relations involving phases.



The structure factor F and the electron density p
|, is proportional to |Fpe |2

Foe = Vf Puy2 €XP[+27i(hx+ky+82)] dV

Pz = (UV) 2ie Frce €xp[—2mi(hx+ky+€2)]

Fre and  p,,, are related to each other by means of these Fourier
transformations. The electron density p is real and positive, but the
structure factor F is a complex number: to calculate the electron
density from the structure factors, we also need the phase (¢) of F.

Under normal conditions we can only measure the diffracted intensities
| and not the phase ¢ of a reflection h,k,8, so it appears that we are
faced with an insoluble problem, the crystallographic phase problem.



What are phases (1)?

The electron density is obtained by Fourier transformation of the
structure factors F,,,. F,,, are complex numbers with amplitudes and
phases.

Pxyz = (11V) 2kt Fria €xp[-2mi(hx+ky+|z)]
The reciprocal transformation to calculate Fy,, from p,,,:
Fow = [y £yyz €XP+27i(hx+ky+2)] AV
can also be represented as a sum over the n atoms in one unit-cell:
Fr = Z?zl fiexp[+2mi(hx;+ky;+z)] o
Faa = Z, i { cos[2n(hx;+ky;+z)]+i-sin[2r(hx;+ky+Z)] }

where f; is the scattering factor of atom j (including thermal motion). If
the structure is centrosymmetric, the sine terms for x,y,z and —x,-y,—z
cancel, with the result that the phase of F,,, must be 0° or 180°. In the
special case of one atom on the origin, all phases must be 0°.



Correct Phasing
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Incorrect Phasing
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How to know correct phasing

The electron density Is always greater or
equal to zero

The electron density is highly localized at the
atom positions.

Since the distance between maxima

represents bond distances, the peaks should
be distinct.



Approaches to Structure Solution

« The process of overcoming the phase problem
IS referred to as structure solution.

« There are several approachs
Directly Determine a set of consistent phases

by using probabi
Try to correctly p

ity relations—direct methods
ace at least 15% of the density

within the cell—F

eavy atom methods

Some combination of the two

Charge flipping



Charge Flipping

This is the newest method (G. Oszlanyi and A. Sito, Acta Cryst.
(2004). A60, 134-141)

This Is an ab initio method that does not require the formula or space
group

The method is done as follows

1. Assign arbitrary phases to the observed data

2. Do a Fourier Transform to electron density space

3.Change the sign of any density which is less than some value
delta (note: cannot use initially zero for delta as it will converge to a
false solution)

4. Do a Fourier Transform to calculate data.

5. Apply the calculated phases to the observed data

6. Go to step 2.



Incorrect Phasing

J/\AM M




Charge Flipping

« Advantages

- Do not need either the space group or the formula
- Very easy to program and understand

» Disadvantages

- Very slow —two Fourier Transforms/cycle
- Badly effected by noise (weak) data.

- Provides the electron density in the entire cell—
must then figure out the space group and element
assignments to proceed.



PLATON

« Charge flipping is programmed in PLATON a
crystallographic tool box program

« PLATON is written by Antony (Ton) Spek at the
University of Utrecht in the Netherlands

« PLATON Is free for academics and is available
for WINDOWS and LINUX.

« PLATON Is used for graphics, analysis, and
other functions. It will be used for many
operations In this course.



Superflip

The program superflip in its Shelx equivalent
version has been incorporated into the solve

gui.

This program Is very fast as it uses extremely
efficient Fourier transform methods.

The current software to mate It to the Purdue
package is in the beta state and may have
errors.



Direct Methods

« This Is an attempt to create a consistent set of
phases starting with a few arbitrary phases

 Makes use of several features of the electron
density

- Density Is always positive
- Density is localized
- The average density Is close to zero



Kasper-Harker Inequality

Fooo IS SIMmply the sum of all the electrons in the

unit cell. This is F for the beam at ©=0°

The unitary structure factor u , Iis defined as
Unia=F e/ Fooo

u will be 1 if every atom in the unit cell is
scattering in phase.

Obviously most u values are much less than 1



Kasper-Harker Inequality

In 1948 Kasper and Harker published the
following inequality

us @ 1/2 + 1l2u2h,2k,2l

This means that if both u,_,, and Usp, ok 21
that it is probable that the sign of Usp ok 21

are both large
IS +



us B1/2 +1/2u

2h,2k,2I

TABLE 111 Examples of Phase Determination by an Inequality

Uk luzn 22l Phase +  Phase - Comment

0.60 0.20 0.60 0.40 u(2h, 2k, 21) must be +
0.50 0.10 0.55 0.45 Must be +

0.40 0.10 0.55 0.45 ~ Could be either

0.40 0.30 0.65 0.35 Must be +

0.25 0.50 0.75 0.25 Almost certainly +
0.25 0.30 0.65 0.35 Could be either




What is the big deal

This suggests that it is possible to determine
something about the phases from intensity
iInformation.

By itself the Kasper-Harker inequality Is useless
as there are very few cases where the two
needed reflections are both strong.



FT-NMR

« The wavelength domain of an NMR has
properties similar to that of real space electron
density.

 Try to see what we can see In the fid that is like
X-ray data and how we might learn something
from It.

« Unlike an NMR fid the x-ray data Is unsigned
and not continuous






FID Analysis

o ItIs clear that the extremes are the key.

o If the maximum iIs located then it can be
assumed the data nearest to it share the same

sign.

« However finding the extremes is more difficult
than just finding the largest absolute values.
Since the Iintensity falls off with time (or theta for
X-rays) the largest values are not always a
maximum



How to FInd Intense Data

. If the expected value at a particular time (theta)
can be found then data that are very much
larger than the expected value suggest they are
near a maximum.

« For the x-ray case the expectation value can be
found for a particular theta from
<f>=k€ Zf? exp(-2BsinB?/\?)

« This is equivalent to placing all the electrons In
the cell in one average density



. k€ 2f? exp(-2BsinB?/\?)

. What are the symbols.

« The f's are the scattering factor for each atom
which is summed over all the atoms in the cell.

This requires at least an estimate of the formula
and Z must be provided!! If the formula is way
off then the expectation value will be incorrect.

« B Is the Isotropic adp
k IS the scale factor

€ is a scaling factor for some classes of
reflections



Scale Factor

« Obviously the calculated values for F (the
corrected square root of the Intensity of a given
reflection) depends only on the structure.

« The observed data depends on the size of the
crystal, the intensity of the x-ray beam, etc.

« 10 compare observed vs calculated data there
needs to be a scale factor that places the
observed data on the same scale as the
calculated data



Initial Values

of B and k

 T0 calculate the expectation value both B and k

are needed.

« These can be calculated from a Wilson plot—

see Massa for detalls.

« Note B Is calculated from the linear slope of a

function that Is anything

« Bad values of B can bad
results!

out linear.

y effect direct methods



E's

« The real intense data can be located by dividing
the observed value of F by the expectation
value at that theta.

o The result are called normalized structure
factors and are given the symbol E.

« After the E's are calculated they are
renormalized so that the average value of E Is
1.0

« Therefore E>1.0 are strong reflections.



The Sayre equation
(1952)

In the same issue of Acta Crystallographica in 1952, Sayre, Cochran
and Zachariasen independently of each other proposed phase
relations that could be summarized with the equation:

Fo =0 Zh’ (Fr Frone)

This is known today as the Sayre equation. q is a constant that
depends on sin(0)/A of the reflection h (hkl). The summation is
performed over all reflections h’ (h’k’l’). For a structure with equal
point atoms, the electron density is proportional to its square. The
convolution theorem then leads directly to the Sayre equation. This
equation is under these conditions an exact relationship, provided
that the summation is performed over all reflections, including Fgy
(which can not normally be measured).



Normalized structure factors

Direct methods turn out to be more effective when the observed
structure factors F, are modified to allow for the effects of the
electron distribution within an atom and its thermal motion. The
resulting normalized structure factors E, correspond to the structure

factors of a point atom structure.

Eh2 — (FhZ/S) / <|:2/8>resolution shell

The statistical factor € is usually 1, but can be greater for special
reflection classes (e.g. 4 for 00l in tetragonal space groups). <F?/e>
can either be calculated directly or modeled with the help of an
exponential function (Wilson plot).



The triplet relation

For the Sayre equation with E instead of F:
E, =q 2, (EpEnp)

one can compare the phases of the left and right sides for a single h’
contribution instead of a summation:

¢, =@+ ¢, (modulo 360°)

If this equation were exact, it would be possible to use it to derive all the
phases from a small number of starting phases. However it should be
understood in a statistical sense. Starting from suitable assumptions,
for example that the structure consists of equal, randomly distributed
atoms, it is possible to derive a probability distribution for this equation
(Cochran, 1955):

P(@) = g exp( 2|E Ep, Epp-|cos(@)/N*)

where &@=¢ - @é.— @ ., g is anormalizing factor and N is the number
of atoms in the corresponding primitive unit-cell. It follows that the
phase relations are more reliable for small structures and for the largest
E-values!



The tangent formula (Karle & Hauptman, 1956)

The tangent formula, often in a well disguised form, is still the key
formula for the solution of structures by direct methods. The formula
IS nothing more than the standard method of calculating the phase of
a sum of complex numbers; it is used to calculate the phase of the
sum represented by the Sayre equation:

20 | EnEncnel sin( 0+ @nn)
2n | EnEncne| cos( @+ énp-)

In the calculation of the phases, the signs of the numerator and
denominator must both be taken into account, so that the resulting
angle is in the full range 0-360°. With sufficient number crunching
power it is possible to solve small structures starting from random
phases by repeated application of this equation.

tan(gh) =

The Nobel prize for chemistry for 1985 was awarded to J. Karle and
H. A. Hauptman for their contributions to direct methods.
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The phase problem is really a search problem; there are various
structures (minima) that are reasonably consistent with the tangent or
related equations, including both the correct solution and the

statistically too perfect uranium atom pseudo-solution which has all
phases zero!



The limits of direct methods in reciprocal space

Conventional direct methods, using improved versions of the tangent
formula, are computationally extremely efficient for the solution of
structures of up to about 100 unigue atoms. Small structures can
even be solved in one or two seconds. In spite of this, these methods
rapidly run out of steam for structures larger than about 200
Independent equal atoms, and few structures larger than 200 atoms
have been solved in this way.

The efficiency of the tangent formula as a search algorithm lies in its
ability to relate phases of reflections that lie far apart in reciprocal
space. The weaknesses of this formula — for example the tendancy to
produce a uranium atom solution — become more serious as the
structures get larger. It is necessary to constrain the phases in some
way so that they correspond to a chemically sensible structure.

All such direct methods require data to a resolution of 1.2 A or better
(atomic resolution). Whether this is because the atoms have to be
resolved from each other, or simply because the data to parameter
ratio needs to be high enough, is not clear.



Direct Methods In Practice

o Calculate the E's

o Try to find a few reflections that can be used to
produce the entire data set.

- The parity groups of these reflections are important
- eee, eeo, eoe, oee, 00e, 0e0, €00, 000

- Some programs normalize E's so that each parity
group's average is 1.0

o Arbitrarily assign phases to these starting
reflections and expand to derive as many
phases as possible.



A Problem

 This approach produces many possible
solutions. Obviously most are not correct.

« How can the quality be evaluated.

« Do a Fourier Map on the E's and analyze this
for chemical correctness. This is way to slow.

« Check on consistency

- do the expanding set of phases suggest common
phases on other data

- do the phases predict the weak relfections are weak



FOM

. The indicator used is the FOM —Figure of Merit.
. Its value depends on the program used.

« Need some familiarity with the individual
program to have a feel for what good values are



Programs

« MULTAN —original program rarely used
anymore

o SHELXS — part of SHELXTL —FOM should be
as small as possible usually much less than one

« The Sir programs

- SIR2002

- SIR2004 Typically FOM is greater than 3 but since
this package Is so automatic user does not even
notice.



random starting

phases
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reciprocal space:
refine phases

When the figures of merit indicate a good solution, it can be extended
to the full structure by using all the data. Dual space methods were
first implemented in the computer program Shake and Bake, and later
In other programs. In this way it is possible to solve structures
containing up to about 1000 independent atoms (not counting H).

Dual

space

methods

Weeks, Miller, DeTitta,
Hauptman et al. (1993)

SF-calculation

<

FT
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real space: assign
peaks to atoms
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many cycles, E > E_;,

Atomic resolution is however still necessary.



