# **Absolute Configuration**

- Types of space groups
- Non-centrosymmetric
- Determining Absolute Configuration

# **Centric Space Groups**

- Any space group that has the inversion symmetry operation
- In this case the phase problem reduces to a determination of the sign of the amplitude.
- Do not need to worry about cell handedness or absolute configuration.

### Non-centrosymmetric Space Groups

- Come in two forms.
- Type one is a cell that does not contain an inversion center but does contain a mirror (glide plane) or improper rotation axes. This class of cells can NOT contain enantiomorphically pure compounds
- The other type does not contain the above symmetry elements and can crystallize optically pure materials—Polar Space Groups

# How can a cell be enantiomorphic if the contents are racemic?

- For non-polar accentric cells the contents are racemic yet the unit cell is enanitomorphic.
- The arrangement of molecules in the unit cell creates the optical activity.
- Is there a chemical analogy?

# Consider $Co(en)_3^{3+}$

Obviously Co<sup>3+</sup> nor ethylenediamine is optically active



# Co(en)<sub>3</sub>

- Yet the ion is optically active
- Note there is not a single enantiomorphic atom in the structure. The overall arrangement creates the optical activity.



# Anomalous Scattering(AS)

- AS arises from absorbed then emitted photons.
- These photons are out of phase with the normally scattered photons.
- AS is important in both centric and accentric space groups.
- The components of AS are given by f' and f" where f' is the real and f" the imaginary component.
- The values of f' and f" are functions of the wavelength used but are independent of the scattering angle.

#### What does imaginary mean?



# How does AO effect centric scattering



**ig. 10.5.** Structure factors for a pair of atoms related by an inversion center (Atom 1 x, y, z; Atom 2  $\bar{x}$ ,  $\bar{y}$ ,  $\bar{z}$ ). **a** without **b** with anomalous dispersion.

# How does it effect accentric space groups?



# A problem

- Since we cannot tell x,y,z from -x,-y,-z then we are not sure which is really hkl and which
  - -h-k-l (These are the Friedel pairs)
- This means we do not know if we are adding or subtracting the AS imaginary component from the real component.
- If the handedness is correct and the enantiomorph correct then the addition sign will be correct. If one of these is incorrect then the result will be subtraction.

- If the absolute configuration is correct than the correct Friedel pair will have the correct intensity difference.
- If incorrect than the more intense will actually be less intense and vice versa.
- This is the origin for using AO to determine absolute confguration.
- Discovered by the Dutch crystallographer Johannes Bijvoet.

#### How big is this effect.



Figure 8.13.  $f_{Co}$ ,  $f'_{Co}$ ,  $-\Delta f'_{Co}$ , and  $\Delta f''_{Co}$ for Cu K<sub>a</sub> radiation as functions of  $(\sin \theta)/\lambda$ .

#### 134 Additional Topics

**Table 10.1.** Anomalous dispersion factors  $\Delta f'$  and  $\Delta f''$  and mass absorption coefficients  $\mu/\varrho$  for Cu- and Mo- $K_{\alpha}$  radiation and a selection of common types of atoms. From *Int. Tab. C* [12] Tables 4.2.6.8 and 4.2.4.3.

|       | $\mathrm{Cu}K_{\alpha}$ |              |                                          | ΜοΚα        |              |                                           |
|-------|-------------------------|--------------|------------------------------------------|-------------|--------------|-------------------------------------------|
| 81035 | $\Delta f'$             | $\Delta f''$ | $\mu/\varrho [\mathrm{cm}^2/\mathrm{g}]$ | $\Delta f'$ | $\Delta f''$ | $\mu/\varrho  [\mathrm{cm}^2/\mathrm{g}]$ |
| С     | 0.0181                  | 0.0091       | 4.51                                     | 0.0033      | 0.0016       | 0.576                                     |
| N     | 0.0311                  | 0.0180       | 7.44                                     | 0.0061      | 0.0033       | 0.845                                     |
| 0     | 0.0492                  | 0.0322       | 11.5                                     | 0.0106      | 0.0060       | 1.22                                      |
| F     | 0.0727                  | 0.0534       | 15.8                                     | 0.0171      | 0.0103       | 1.63                                      |
| Na    | 0.1353                  | 0.1239       | 29.7                                     | 0.0362      | 0.0249       | 3.03                                      |
| Si    | 0.2541                  | 0.3302       | 63.7                                     | 0.0817      | 0.0704       | 6.64                                      |
| Р     | 0.2955                  | 0.4335       | 75.5                                     | 0.1023      | 0.0942       | 7.97                                      |
| S     | 0.3331                  | 0.5567       | 93.3                                     | 0.1246      | 0.1234       | 9.99                                      |
| Cl    | 0.3639                  | 0.7018       | 106.                                     | 0.1484      | 0.1585       | 11.5                                      |
| Cr    | -0.1635                 | 2.4439       | 247.                                     | 0.3209      | 0.6236       | 29.9                                      |
| Mn    | -0.5299                 | 2.8052       | 270.                                     | 0.3368      | 0.7283       | 33.1                                      |
| Fe    | -1.1336                 | 3.1974       | 302.                                     | 0.3463      | 0.8444       | 37.6                                      |
| Со    | -2.3653                 | 3.6143       | 321.                                     | 0.3494      | 0.9721       | 41.0                                      |
| Ni    | -3.0029                 | 0.5091       | 48.8                                     | 0.3393      | 1.1124       | 46.9                                      |
| Cu    | -1.9646                 | 0.5888       | 51.8                                     | 0.3201      | 1.2651       | 49.1                                      |
| As    | -0.9300                 | 1.0051       | 74.7                                     | 0.0499      | 2.0058       | 66.1                                      |
| Br    | -0.6763                 | 1.2805       | 89.0                                     | -0.2901     | 2.4595       | 75.6                                      |
| Mo    | -0.0483                 | 2.7339       | 154.                                     | -1.6832     | 0.6857       | 18.8                                      |
| Sn    | 0.0259                  | 5.4591       | 247.                                     | -0.6537     | 1.4246       | 31.0                                      |
| Sb    | -0.0562                 | 5.8946       | 259.                                     | -0.5866     | 1.5461       | 32.7                                      |
| Ι     | -0.3257                 | 6.8362       | 288.                                     | -0.4742     | 1.8119       | 367                                       |
| W     | -5.4734                 | 5.5774       | 168.                                     | -0.8490     | 6.8722       | 93.8                                      |
| Pt    | -4.5932                 | 6.9264       | 188.                                     | -1.7033     | 8.3905       | 107                                       |
| Bi    | -4.0111                 | 8.9310       | 244.                                     | -4.1077     | 10.2566      | 126                                       |

### Observations

- Because the normal scattering falls off with the diffraction angle but the anomalous scattering does not the AS contribution will be greatest for high angle reflections.
- However, these are the weakest reflections with the largest errors. Means the differences because of AS may be less than the error.
- In general it is impossible to determine the absolute configuration for compounds containing only light atoms (<Na) using Mo radiation
- The heavy atom can be anywhere in the cell.

# Changing Absolute Configuration

- Change all atomic positions so xyz is now
- -X-Y-Z
- Some polar space groups come in pairs

 $-P3_1P3_2P4_1P4_3P6_1P6_5$ 

- In this case besides the atomic positions, the space group must be changed to the other of the pair
- For space groups with d glides it is somewhat more complex.

# How to determine the absolute configuration

- It must be noted that the configuration is either all correct or all incorrect everywhere.
- Therefore if the configuration of one atom is known it can be used to set all the other atoms.
- Examples
  - Steroids
  - Tartrates using natural tartaric acid
  - Part of a molecule unchanged in synthesis.

# **Bijvoet Method**

- Collect all data and Friedel pairs.
- Find the pairs that have the biggest intensity difference between hkl and -h-k-l
- See how these agree with Fcalc
- Change the absolute structure and see if the agreement improves or gets worse.
- Problem: need twice as much data as needed to solve the structure

## **R-factor method**

- Refine one absolute structure to completion
- Invert the structure and refine this to completion.
- Compare the R-factors.
- The lowest one is correct. However, need to do a statistical analysis using Hamilton's T test to determine if this is statistically real.
- Advantage—do not need Friedel pairs
- Disadvantage usually fails unless there is a heavy atom present.

### **Refinement Parameters**

- Rogers suggested refining the sign of the anomalous terms. +1 means correct -1 means incorrect. While this works the parameter is very slow to converge and requires many cycles of refinement before it settles down.
- Howard Flack suggested use a parameter to refine both enantiomers at once. The one being refined had an occupancy of (1-x) while the other was x.

#### Flack Parameter

- If the Flack Parameter (x) refines to zero then the enantiomer is correct, while 1 is incorrect.
- The Flack Parameter can take on values outside of 0 to 1. These are generally meaningless and suggest the anomalous scattering is too weak to use.
- The s.u. in the Flack Parameter is important.
  - 0.2(1) suggests correct.
  - 0.2 (6) suggests nothing.

### Flack Parameter

- Advantages
  - Do not need Friedel pairs to calculate.
  - Provides a quantitative indicator of the absolute configuration.
- Disadvantages
  - The Flack Parameter tends to correlate with other parameters when there is not much Friedel pair data.
  - It is not Chemist friendly

# The Hooft Approach

- Rob Hooft and Ton Spek worked on a new approach.
- They assumed that most of the Friedel data would be collected which is true for modern area detectors.
- Their method is in PLATON as the Bijvoet calculation and appears in our table ent.txt

### Good Output

| Absolute | Structure | Analysis |
|----------|-----------|----------|
|----------|-----------|----------|

| Flack Parameter                                                        | 0.050 +/- 0.060      |
|------------------------------------------------------------------------|----------------------|
| Hooft Parameter                                                        | 0.024 +/- 0.037      |
| Friedel Coverage                                                       | 99.6%                |
| Assuming No Racemic Twinning is Probability Absolute Structure is Corr | resent<br>rect 1.000 |

Probabilities Allowing for Racemic TwinningProbability Absolute Structure is Correct1.000Probability Absolute Structure is Incorrect0.0E+00Probability Crystal is a Racemic Twin0.2E-35

Hooft, R.W.W., Straver, L.H., and Spek, A.L. (2008). J. Appl. Cryst., 41, 96-103.

#### **Undetermined Output**

| Absolute | Structure | Ana | lysis |
|----------|-----------|-----|-------|
|----------|-----------|-----|-------|

| Flack Parameter                                                             | 0.400 +/- 1.200      |
|-----------------------------------------------------------------------------|----------------------|
| Hooft Parameter                                                             | 0.417 +/- 0.634      |
| Friedel Coverage                                                            | 98.6%                |
| Assuming No Racemic Twinning is P<br>Probability Absolute Structure is Corr | resent<br>rect 0.551 |

Probabilities Allowing for Racemic TwinningProbability Absolute Structure is Correct0.329Probability Absolute Structure is Incorrect0.267Probability Crystal is a Racemic Twin0.404The absoloute structure could be better determined by<br/>collecting another data set using copper radiation!

Hooft, R.W.W., Straver, L.H., and Spek, A.L. (2008). J. Appl. Cryst., 41, 96-103.

### Borderline

Absolute Structure Analysis

| Flack Parameter             | 0.210 +/- 0.180 |
|-----------------------------|-----------------|
| Hooft Parameter             | 0.216 +/- 0.070 |
| Friedel Coverage            | 94.6            |
| Assuming No Racemic Twinnin | na is Present   |

Probability Absolute Structure is Correct n/a

| Probabilities Allowing for Racemic Twinning |         |
|---------------------------------------------|---------|
| Probability Absolute Structure is Correct   | 0.970   |
| Probability Absolute Structure is Incorrect | 0.8E-25 |
| Probability Crystal is a Racemic Twin       | 0.030   |

### Borderline

Absolute Structure Analysis

| Flack Parameter             | 0.210 +/- 0.180 |
|-----------------------------|-----------------|
| Hooft Parameter             | 0.216 +/- 0.070 |
| Friedel Coverage            | 94.6            |
| Assuming No Racemic Twinnin | na is Present   |

Probability Absolute Structure is Correct n/a

| Probabilities Allowing for Racemic Twinning |         |
|---------------------------------------------|---------|
| Probability Absolute Structure is Correct   | 0.970   |
| Probability Absolute Structure is Incorrect | 0.8E-25 |
| Probability Crystal is a Racemic Twin       | 0.030   |

# Hooft Method

- Advantages
  - Very Quantitative
  - Chemist Friendly
  - Lower errors on the Hooft y Parameter than the Flack Parameter
- Disadvantages
  - Requires Friedel pair data
  - Is very sensitive to how data is collected.