

Programmatic access to the CSD using the

CSD Python API

Try

2022.1 CSD Release

CSD Python API version 3.0.11

2

Table of Contents

Introduction .. 3

Objectives ... 3

Pre-required skills ... 3

Materials ... 3

Example 1: Demonstrating Input and Output... 4

Aim .. 4

Instructions ... 4

Conclusions ... 7

Example 2: Introduction to searching with the CSD Python API .. 9

Aim .. 9

Instructions ... 9

Conclusions ... 12

Workshop Conclusions .. 14

Next Steps ... 14

Glossary ... 14

Bonus Exercise: Customising a simple script for use in Mercury. ... 15

Aim .. 15

Instructions ... 15

Conclusions ... 19

3

Introduction
In the second part of the Programmatic access to the CSD 101 – CSD Python API module, “Try”, you

will review the concepts and features presented in the first part, “Watch”, and try them out yourself.

If at any time you want to rewatch the videos, you can find them from the course webpage

(https://www.ccdc.cam.ac.uk/Community/educationalresources/CSDU/csd-python-api-101/).

This self-guided workshop will cover a range of aspects of the CSD Python API, building from an initial

introduction to the basic mechanics of input and output through a Python console, to running a search.

The applications illustrated through these case studies are just as easily applied to your own

experimental structures as they are to the examples shown here using entries in the Cambridge

Structural Database (CSD).

Before beginning this workshop, ensure that you have a registered copy of the CSD installed on your
computer. For further information, please contact your site administrator or the CCDC
(https://www.ccdc.cam.ac.uk/theccdcprofile/contactus/).

Objectives

In this workshop, you will:

• Learn how to access CSD entries through the CSD Python API.

• Learn how to read different file formats.

• Learn how CSD entries are represented in the CSD Python API.

• Learn how to conduct a Text Numeric Search of the CSD.

This workshop will take approximately 30 minutes to be completed.

Note: The words in Blue Italic in the text are reported in the Glossary at the end of this handout.

Pre-required skills

The following exercises assume that you are familiar with the basics of Python. For the bonus

(optional) exercise, it is required familiarity with Mercury.

Materials

For this workshop you will need the file example.cif that you can download here. A text editor is

required for scripting during this workshop. If you have a preferred text editor, we recommend sticking

with that. If you do not have a preferred editor, we would recommend Notepad++ for Windows

(https://notepad-plus-plus.org/) and BBEdit for macOS (available in the App Store). The basic Notepad

functionalities in Windows would also be enough. For more in-depth Python editing or for interactive

work, try looking at PyCharm (https://www.jetbrains.com/pycharm/) or Jupyter

(https://jupyter.org/). Visual Studio is available for all platforms and would be a suitable editor

(https://visualstudio.microsoft.com/downloads/).

https://www.ccdc.cam.ac.uk/Community/educationalresources/CSDU/csd-python-api-101/
https://www.ccdc.cam.ac.uk/theccdcprofile/contactus/
https://downloads.ccdc.cam.ac.uk/tutorials/API/csd-python-api-wkshop.zip
https://notepad-plus-plus.org/
https://www.jetbrains.com/pycharm/
https://jupyter.org/
https://visualstudio.microsoft.com/downloads/

4

Example 1: Demonstrating Input and Output

Aim

This example will focus on understanding the basic principles of using the CSD Python API. We will
write a script that will print the results out to the console. We will cover the concepts of Entries,
Molecules and Crystals.

Instructions

1. For this exercise we will be writing the script in a Python file that we can then run from a command

prompt later. Start by creating a folder where you will save your Python files in a place where you

have read and write access, for example C:\training\ for Windows, or something equivalent on

macOS or Linux. We will continue to use our C:\training\ folder (or equivalent), through the

tutorial.

2. Open the command prompt from this folder. In Windows you can type ‘cmd’ in the File Explorer

tab and press ‘Enter’. In Linux you can right click on the folder and select Open in Terminal. In

macOS, right click on the folder, select Services then click New Terminal at Folder.

The command prompt window should now appear.

3. To run your Python scripts from the command prompt, you will first need to activate your
environment. The activation method will vary depending on the platform:

• Windows: Open a command prompt window and type (including the " marks):
"C:\Program Files\CCDC\Python_API_2022\miniconda\Scripts\activate"

• MacOS/Linux: Open a terminal window and change directory to the CSD Python API bin folder:
cd /Applications/CCDC/Python_API_2022/miniconda/bin

Then activate the environment with:
source activate

Note that if you are running an older version of the software, adjust the “Python_API_20xx” path
accordingly. If the activation is successful, (base) will appear at the beginning of your command
prompt:

5

4. We can now start writing our script. In the folder you created, open your preferred text editor and

create a new Python file called example_one.py. The following steps show the code that you

should write in your Python file, along with explanations of what the code does.

5. The CSD Python API makes use of different modules to do different things. The ccdc.io module

is used to read and write entries, molecules, and crystals. To make use of modules, we first need

to import them.

from ccdc import io

6. Entries, molecules, and crystals are different types of Python objects, and have different

characteristics, although they do have a number of things in common. They each have readers

and writers that allow for input and output respectively. We will start by setting up an entry reader

and using it to access the CSD. From the CSD, we want to open the first entry.

entry_reader = io.EntryReader('CSD')

first_entry = entry_reader[0]

print(f'First Refcode: {first_entry.identifier}')

The 0 means that we want to access the first entry in the database (when we have multiple items

in a list or a file, Python starts numbering them from zero). We are outputting the information as

an f string, which is a way of formatting strings available in Python 3.6 and above. The expression

inside the curly brackets {} will be replaced with the value of the expression when the print

command is executed by Python. In this case first_entry.identifier will return the

identifier (also known as a CSD Refcode) of the first entry in the CSD.

7. Make sure the changes to your file have been saved. We can now run the script in the command

prompt – this can be done by typing the following in the command prompt and then pressing

‘Enter’:

python example_one.py

‘python’ tells the command prompt to run Python and ‘example_one.py’ is the name of our

Python script that Python will execute.

You should see in the command prompt that “First Refcode: AABHTZ” is returned, which is the

string included in our script and identifier of the first entry. Giving the 'CSD' argument to the

EntryReader will open the installed CSD database. It is possible to open alternative or multiple

databases in this way. Similar methods can be used to read molecules or crystals with a

MoleculeReader or CrystalReader instance.

6

8. From an entry object, it is also possible to access the

underlying molecular or crystal information for that

CSD entry. We will explore this using paracetamol (CSD

Refcode HXACAN). The code below is accessing the

entry HXACAN directly from our EntryReader, then

accessing the underlying molecule from this entry. Add

these lines to your script:

hxacan_entry = entry_reader.entry('HXACAN')

hxacan_molecule = hxacan_entry.molecule

9. We can also access information from inside the molecule class for this entry. The molecule class

contains a list of atoms and bonds. This next line of code will return the number of atoms in the

HXACAN molecule, by checking the length of the atom list.

print(f'Number of atoms in HXACAN: {len(hxacan_molecule.atoms)}')

10. Save the changes to your script and run the script in the command prompt again using the same

command as in Step 7. You should see the string printed out to your screen; “Number of atoms in

HXACAN: 20”.

11. We can access information about the individual atoms within the atom list such as atom labels,

coordinates and formal charges. Add these next lines to your script and save the file (Note: the

four spaces before print are very important!):

for atom in hxacan_molecule.atoms:

 print(f'Atom Label: {atom.label}')

12. Save and run your Python script in the command prompt again, as done for Step 7. You should

see that the label for each atom in the paracetamol molecule is now returned. We have used a for

loop to iterate through each atom in the molecule and print out its atom label. for loops are used

to iterate through each item in a list of items – the atoms in the molecule in this case. for loops are

useful and allow us to iterate through everything from the atoms in a molecule to entries in the

CSD.

13. We can also read entries, molecules, and crystals from a number of supported file types. We are

going to use an example .cif file to illustrate this. For this demonstration, we will use the provided

example.cif (which you can access here) and place in the C:\training folder.

We need to tell Python where to find this file, so add the following line to your script, making sure

that the filepath is that which you have just used:

filepath = r"C:\training\example.cif"

Python does not like spaces or backslashes in file paths! The r and double quotes (" ") help us to

get around this.

CSD Entry HXACAN

https://downloads.ccdc.cam.ac.uk/tutorials/API/csd-python-api-wkshop.zip

7

14. Now that Python knows where the .cif file is located we can access the crystal using a

CrystalReader, by adding these next lines to our script:

crystal_reader = io.CrystalReader(filepath)

tutorial_crystal = crystal_reader[0]

print(f'{tutorial_crystal.identifier} Space group :

{tutorial_crystal.spacegroup_symbol}')

Save the changes you have made to your file and run your Python script in the command prompt

again. The output should now also display the space group of our example crystal, P21/n.

15. It is good practice to close files when we are finished with them, but before we do that, we are

going to take the underlying molecule from our tutorial crystal for use later. Add the following

lines to your script:

tutorial_molecule = tutorial_crystal.molecule

crystal_reader.close()

16. The CSD Python API can also write entries, molecules, and crystals to a number of supported file

types. To do this, we need to tell Python where we want the file to be written. We will continue

to use our C:\training\ folder (or equivalent), and we will use this to set up our new file as a

variable. Add this line to your script:

f = r"C:\training\mymol.mol2"

17. With this new variable we can use the CSD Python API to create a .mol2 file that contains the

molecule from the example .cif file that we kept from earlier. To do this, add these lines to your

script:

with io.MoleculeWriter(f) as mol_writer:

 mol_writer.write(tutorial_molecule)

Here, the with statement ensures that we automatically close the mol_writer and the file when

we have written our molecule.

18. Save the changes you have made to your file and then run the Python script in command prompt

once more. What we have done in this last step is to create a file mymol.mol2 in our folder, then

write the molecule we kept from earlier into it. In this way, we can write out molecules, crystals,

and entries that we have obtained or modified and use them for other tasks and with other

programs.

Conclusions

The CSD Python API was used to explore input and output of various objects and file types using the

ccdc.io module.

The concepts of entries, molecules and crystals were illustrated here along with some of the ways in

which these are related.

8

You should now know how to run Python scripts using the CSD Python API and have an appreciation

of how objects and files are read into and written out of the CSD Python API.

Full Script

Note: if you copy and paste the script below, double check that the spacing is correct.

from ccdc import io

entry_reader = io.EntryReader('CSD')

first_entry = entry_reader[0]

print(f'First Refcode: {first_entry.identifier}')

hxacan_entry = entry_reader.entry('HXACAN')

hxacan_molecule = hxacan_entry.molecule

print(f'Number of atoms in HXACAN: {len(hxacan_molecule.atoms)}')

for atom in hxacan_molecule.atoms:

 print(f'Atom Label: {atom.label}')

filepath = r"C:\training\example.cif"

crystal_reader = io.CrystalReader(filepath)

tutorial_crystal = crystal_reader[0]

print(f'{tutorial_crystal.identifier} Space group :

{tutorial_crystal.spacegroup_symbol}')

tutorial_molecule = tutorial_crystal.molecule

crystal_reader.close()

f = r"C:\training\mymol.mol2"

with io.MoleculeWriter(f) as mol_writer:

 mol_writer.write(tutorial_molecule)

9

Example 2: Introduction to searching with the CSD Python API

Aim

This example will focus on using the CSD Python API to carry out a search across the CSD. We will

create a search query, add criteria to the search query and then save the resulting hits from the query

as a refcode list (or .gcd file).

The CSD Python API allows searches to be performed. There are a number of different search modules

including text numeric searching, substructure searching, similarity searching, and reduced cell

searching. In this example, we will be using the text numeric search module which searches text and

numeric data associated with individual entries in the CSD.

Unlike the similarity and substructure search modules, the text numeric search module can only be

used to search the CSD because it searches fields that are specific to the database.

Note: If you have not tried Example 1, you will need to do Steps 1-3 of that exercise before continuing

with this exercise to set up the command prompt.

Instructions

1. In the same folder as in Example 1, open your preferred text editor and create a new Python file

called ‘text_numeric_search.py’. The following steps show the code that you should write in your

Python file, along with explanations of what the code does.

2. First, we need to import the Text Numeric Search module in our script.

from ccdc.search import TextNumericSearch

3. We then need to create our search query. This line of code creates an empty query called ‘query’.

query = TextNumericSearch()

4. We are going to use our query to look for entries that have ‘ferrocene’ in their chemical names in

the CSD. To do this we need to define the search parameters to find entries which contain the

word ‘ferrocene’ anywhere in the chemical name and synonyms field.

query.add_compound_name('ferrocene')

5. To search the CSD we will use the .search() function which will produce a list of ‘hits’ that are

entries which have met the defined criteria. This has been assigned to variable hit_list to save

the output of the search.

hit_list = query.search()

6. To see how many entries have been found in our search, we will add a line to print the length of

the hit list.

print(f'Number of hits : {len(hit_list)}')

7. We are now ready to search the CSD. Save the changes you have made to your script and then run

the Python script in your command prompt. To run your Python script, type the following in your

command prompt and then press ‘Enter’:

10

python text_numeric_search.py

The script may take 10-20 seconds to run and should print out the resulting length of the hit list.

You should obtain at least 7997 hits (As of version 2022.1 of the CSD including Data Update 1 Mar.

2022).

8. We can add more criteria to our query. In this case we will look only for structures published in

the last 5 years by adding a search criterion based on the citation. We can add a range of when

the structure was published. We will then search the CSD again and print out the number of hits

we have obtained.

query.add_citation(year=[2016,2021])

hit_list = query.search()

print(f'Number of hits published between 2016 - 2021 : {len(hit_list)}')

Save the changes you have made to the script and then run your script again in the command

prompt. You should obtain at least 1997 entries published in the specified years.

9. We can check what search criteria has been used in the query. This line of code will print out the

components of the query in a human readable form. Add this line to your script and then save the

changes you have made.

print('Query search criteria: ')

print('\n'.join(q for q in query.queries))

Run your script in the command prompt. The output you should see printed in the console is:

This means that the word ‘ferrocene’ appears anywhere in the compound name and synonym

field and the entries have a journal year between 2016 and 2021.

10. If we want to find out the number of hits for each year in our five-year range, then we need to run

separate queries. We can do this by using a for loop to iterate through a range from 2016 to 2021

(+1 is added to 2021 in the range as the function is exclusive – meaning it does not contain the

final number in the result). For each search we need to clear our query – otherwise we would get

no results as the search criteria would be for an entry published in 2016 and published in 2017

etc. which is not possible in the CSD.

for i in range(2016,2021+1):

 query.clear()

 query.add_compound_name('ferrocene')

 query.add_citation(year=i)

 hit_list = query.search()

 print(f'Number of hits in {i} : {len(hit_list)}')

11. Save your changes and then run the script in the command prompt. You should see the number

of hits containing ‘ferrocene’ for each year printed in the command prompt.

11

(You can check the effect of clearing the query each time yourself: comment out the line with

query.clear() on by putting a # at the start of the line and then run your script again – you could

even add in the lines from Step 9 at the end of your script to see what information is in the query

– just remember to correct your script before moving on to the next step).

12. To further explore the search function, we are going to make one final query to look at structures

of ferrocene published in the year 2019. From our searches in Step 10, we have obtained at least

403 hits for entries with a chemical name containing ‘ferrocene’ that were published in 2019.

query.clear()

query.add_compound_name('ferrocene')

query.add_citation(year=2019)

13. The Search module also allows us to filter the hits of our search by various criteria. We are going

to restrict our search to identify only entries with an R factor of less than 2.0% (so we only obtain

a few entries). We can do this by revising our search settings. This is similar to the ‘Search Setup’

pop-up in ConQuest. There are other filters we can apply including structures with no disorder or

what elements the structure can or cannot contain. For other options and syntax, check out the

API documentation.

query.settings.max_r_factor = 2.0

hit_list = query.search()

14. Now we have got the hits from our search, we can extract information from them. In this simple

case we will extract the refcode of each hit, along with the R factor for the entry. To do this we

will use a for loop to iterate through each hit in our hit list. We can access the refcode directly

from the hit object by using hit.identifier. Further entry properties can be accessed via the

nested entry object. For example, hit.entry.r_factor provides the R factor for the structure.

This will print a list of information to the console. Note that the second print statement should be

all on one line.

print(f'Number of hits in 2019 with an R factor < 2% : {len(hit_list)}')

for hit in hit_list:

 print(f' Ref : {hit.identifier} with R-factor :

{hit.entry.r_factor}')

15. Save the changes you have made to your script and then run the script from the command prompt.

You should obtain at least 12 hits with the refcode and R factor of each hit printed out.

https://downloads.ccdc.cam.ac.uk/documentation/API/modules/search_api.html?highlight=max_r_factor#ccdc.search.Search.Settings

12

16. We could also output the refcodes from our hit list to a file. Refcode list files (or .gcd files) can be

used in Conquest, Mercury or the CSD Python API. To do this we will use the EntryWriter class,

which we need to import from the io module.

from ccdc.io import EntryWriter

17. We will write our file to the same training folder as before and call our output file

‘search_output.gcd’ (or equivalent).

f = r"C:\training\search_output.gcd"

18. Finally, we use a for loop to iterate through each hit and write it to the refcode list file.

with EntryWriter(f) as writer:

 for hit in hit_list:

 writer.write(hit)

19. Save the changes to your script and then run the file again in the command prompt. You should

now be able to see your .gcd file in the training folder. This file contains a list of the refcodes from

your search.

Conclusions

This exercise introduced the text numeric search module. You should now know how conduct a text

numeric search, access information from the entries in a hit list and create a refcode list file.

There are many other items that can be searched in the text numeric module including refcodes or

ccdc numbers, property fields (such as bioactivity, crystal colour, crystal habit), structures by specified

authors, the citation can be used to search for specific publications or journals. Further details can be

found in the documentation.

https://downloads.ccdc.cam.ac.uk/documentation/API/descriptive_docs/text_numeric_searching.html

13

Full script

Note: if you copy and paste the script below, double check that the spacing is correct.

from ccdc.search import TextNumericSearch

from ccdc.io import EntryWriter

query = TextNumericSearch()

query.add_compound_name('ferrocene')

hit_list = query.search()

print (f'Number of hits : {len(hit_list)} ')

query.add_citation(year=[2016,2021])

hit_list = query.search()

print (f'Number of hits published between 2016 - 2021 : {len(hit_list)}')

print ('Query search criteria: ')

print ('\n'.join(q for q in query.queries))

for i in range(2016,2021+1):

 query.clear()

 query.add_compound_name('ferrocene')

 query.add_citation(year=i)

 hit_list = query.search()

 print(f'Number of hits in {i} : {len(hit_list)}')

query.clear()

query.add_compound_name('ferrocene')

query.add_citation(year=2019)

query.settings.max_r_factor = 2.0

hit_list = query.search()

print (f'Number of hits in 2019 with an R factor < 2% : {len(hit_list)}')

for hit in hit_list:

 print(f' Ref : {hit.identifier} with R-factor : {hit.entry.r_factor}')

f = r"C:\training\search_output.gcd"

with EntryWriter(f) as writer:

 for hit in hit_list:

 writer.write(hit)

14

Workshop Conclusions
This workshop introduced the CSD Python API. You should now be familiar with:

• Accessing CSD entries through the CSD Python API.

• Reading and printing information about the molecular structure and the crystallographic

information.

• Reading and writing different file formats, such as .cif, .mol2.

• Conducting Text Numeric Searches of the CSD; in particular using compound name,

publication year, R factor.

• Refining Text Numeric Searches.

• Saving results hitlists in .gcd files, useful for running further analysis in the CSD Python API,

ConQuest or Mercury.

Next Steps
Now that you have completed the Try part of this CSDU module, you can head to the final part: the

quiz! Go back to the module webpage

(https://www.ccdc.cam.ac.uk/Community/educationalresources/CSDU/csd-python-api-101/) and

follow the instructions to complete the final test.

Glossary
f string – An f string is a way of formatting strings in Python available with version 3.6 and above. The

string begins with an f, the string is enclosed in quotation marks and any expressions in the string are

included within curly brackets {}. These expressions will be replaced with their values once the script

is run.

Refcode list or .gcd file – a file containing a list of CSD Refcodes. This file can be opened in various

CCDC applications.

https://www.ccdc.cam.ac.uk/Community/educationalresources/CSDU/csd-python-api-101/

15

Bonus Exercise: Customising a simple script for use in Mercury.

Aim

This example will be focussing on the basics of how Mercury interacts with the CSD Python API, where

scripts can be stored for use in Mercury and how to make small edits to an existing script. We will

make use of a published crystal structure and a supplied Python script, and then illustrate how to

report some useful information about the structure that is not normally accessible from within

Mercury.

Example system

The example system we will be looking at for this exercise is 4-acetoamido-3-(1-acetyl-2-(2,6-

dichlorobenzylidene)hydrazine)-1,2,4-triazole (shown below) which happens to be the compound

featured in the first entry of the Cambridge Structural Database with the CSD refcode AABHTZ.

Chemical diagram for CSD Entry AABHTZ

Instructions

1. Launch Mercury by clicking its icon . The current structure on screen should be AABHTZ;

however, if this is not the case, in the Structure Navigator toolbar, type AABHTZ to bring up the

first structure in the CSD.

2. From the top-level menu, choose CSD Python API, and then select welcome.py from the resulting

drop-down menu. This will run a simple Python script from within Mercury and illustrate the basics

of how Mercury interacts with CSD Python API scripts.

3. Once the script has finished running, a new window will pop-up displaying the output of the script

containing the CCDC logo and a few details about both the structure we are looking at and the

set-up of your system.

16

4. The second line of text in the script output reports the identifier of the structure that we have

displayed in the Mercury visualiser – AABHTZ – this is generated by the Python script and would

change if we ran the script with another entry or other structural file displayed.

5. The third line of text in the script output reports exactly where the output file is located. The

contents of this output window that popped up are encoded in a simple HTML file. Browse to the

location shown using a file navigator on your computer (e.g., the File Explorer application on

Windows). Right-click on the HTML file in that folder and open it with a file editor such as notepad

– you should see that this file only contains a few lines of HTML text to produce the output you

observed.

6. The fourth line of text in the script output reports where the actual script that you just ran is

located – this will be contained within your Mercury installation directory. Browse to the folder

location as before using a file navigator. This folder contains all the scripts bundled with the

Mercury installation for immediate use upon installing the system.

7. Copy the welcome.py file in this folder and paste it into a location where you have write

permissions on the computer you are using such as the training folder you have created

previously. At the same time, also copy the file named mercury_interface.py from the Mercury

installation directory to your training folder. Note that the mercury_interface.py script will not

appear in the Mercury menu – this is intentional as this is a helper script that is not meant to be

run on its own, so it is automatically hidden.

8. Now we are going to configure a user-generated scripts location in Mercury. To do this, from the

top-level menu, choose CSD Python API, and then select Options from the resulting drop-down

menu. Click on the Add Location button, browse to the training folder where you just saved the

copy of the welcome.py script and click on Select Folder. This will register the folder as an

additional source of scripts that Mercury will add to the CSD Python API menu.

17

9. Now go to the CSD Python API top-level menu and you should see that there is a new section in

the drop-down menu, listing user-generated scripts, with an item for your copy of the welcome.py

script. Click on the copy of the welcome.py script in your user scripts area of the menu. In the

output you will see that the location of the script now matches your user-generated scripts folder

location.

10. We are now going to make some edits to the Python script to display some additional information

about the structure on display. To edit the Python script, right-click on the copy of welcome.py in

your user folder and open it in your text editor.

11. Many of the lines in this script are comments (all those starting with # or surrounded by triple

quote marks ”””) to help explain how the script works and how the interaction between Mercury

and the CSD Python API works. You should see a number of references to a helper function called

MercuryInterface.

18

12. Starting on Line 41 of the script there are a series of lines that provide the content to write to the

HTML output. Each of these lines uses a mixture of HTML and Python commands to write

formatted text to a given file’. Look for the line including the words helper.identifier – this writes

to the output file the identifier for the CSD entry, which in this case is ‘AABHTZ’.

13. Below this line we will add some more information to the content to be displayed when we run

the script. Edit the text as shown below – this will output some additional lines of text as well

reporting both the formula relating to the CSD entry and the chemical name.

'This is the identifier for the current structure: %s' % helper.identifier,

Add the additional information in here

'This is the chemical formula of the current structure: %s' % entry.formula,

'And the chemical name of the current structure: %s' % entry.chemical_name,

14. In the welcome.py script, we have already accessed the entry object for our structure, in this case

the CSD entry AABHTZ. Here we are editing the script to simply read out some further attributes

of the entry, namely the chemical formula and the chemical name. If you want to see what other

attributes an entry object has, look at the CSD Python API on-line documentation by choosing CSD

Python API from the Mercury top-level menu, and then selecting CSD Python API Documentation

from the resulting drop-down menu.

15. Save and re-run the welcome.py script from the user-generated scripts section of the CSD Python

API top-level menu. You will see in the HTML output the additional text and variables relating to

the edits that we made to the script.

19

Conclusions

The initial Python script that we ran was copied into a user-generated scripts location and edited to

add further functionality to it. Mercury allows multiple user-generated script locations and scripts

saved in these areas can be called directly from the menus in the program.

The concept of an entry was illustrated here along with some of the attributes that an entry has such

as identifier, formula, and chemical name. An entry also contains a crystal attribute, from which

further information can be extracted and analyses performed.

You should now know how to run a CSD Python API script from within Mercury as well as how to

customise a script and manage user-generated scripts in Mercury.

	Introduction
	Objectives
	Pre-required skills
	Materials

	Example 1: Demonstrating Input and Output
	Aim
	Instructions
	Conclusions

	Example 2: Introduction to searching with the CSD Python API
	Aim
	Instructions
	Conclusions

	Workshop Conclusions
	Next Steps
	Glossary
	Bonus Exercise: Customising a simple script for use in Mercury.
	Aim
	Instructions
	Conclusions

