Predicting the Shapes of Molecules: the VSEPR Model

Table of Contents

1 I	ntroduction	2
	1.1 Learning outcomes	2
	1.2 Materials	2
	1.3 Pre-required skills	2
2 F	Predicting molecular geometry	3
	2.1 The VSEPR model	5
	2.2 How to apply the VSEPR model to predict basic shape	6
	Exercise 1	8
	2.3 Modifications to basic shapes: considering the effect of lone pairs	8
	2.4 Including multiple bonds in the VSEPR model	11
	Exercise 2	12
	2.5 The influence of electronegativity on molecular shape	13
	Exercise 3	13
	Exercise 4	13
	2.6 When doesn't the VSEPR model work?	13
3 S	Summary	16
;	3.1 Next steps	16
;	3.2 Acknowledgements	16
4 <i>F</i>	Answers to exercises	17
	Exercise 1	17
	Exercise 2	17
	Exercise 3	18
	Exercise 4	18

1 Introduction

The shapes of molecules tend to be controlled by the number of electrons in the valence shell of the central atom. The valence-shell electron-pair repulsion (VSEPR) model provides a simple method for predicting the shapes of such species. The Cambridge Structural Database (CSD) contains a wealth of diverse molecular geometries and provides the ability to visualise and manipulate molecules in three-dimensions. This is vitally important in order to study and understand the shapes adopted by particular molecules.

1.1 Learning outcomes

At the end of this module, you will:

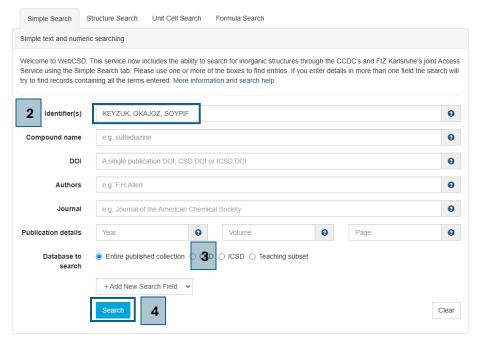
- be able to investigate the shapes of molecules by analysing experimental crystal structure data
- understand the factors that determine the preferred shape adopted by particular molecules
- be able to use the valence-shell electron-pair repulsion (VSEPR) model to predict the shapes of given molecules

1.2 Materials

The structures needed to complete this module are available from the online Web service <u>Access Structures</u>. The majority are from the CSD, with a few examples taken from the Inorganic Crystal Structure Database (ICSD, https://icsd.products.fiz-karlsruhe.de/). The ICSD can also be searched via the Access Structures online portal.

https://www.ccdc.cam.ac.uk/structures/

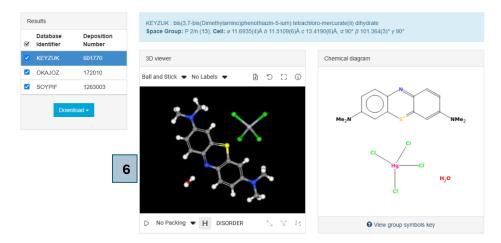
This provides you with all the features required to complete this teaching module. Alternatively, you may prefer to use the structure visualization program Mercury, which you can download for free. Instructions for obtaining this software and links to <u>resources</u> to support you using it are given at the end of this document. This teaching module uses entries in the Teaching Subset; you can find out more about the Teaching Subset here: https://www.ccdc.cam.ac.uk/community/education-and-outreach/education/teaching-subset/.


1.3 Pre-required skills

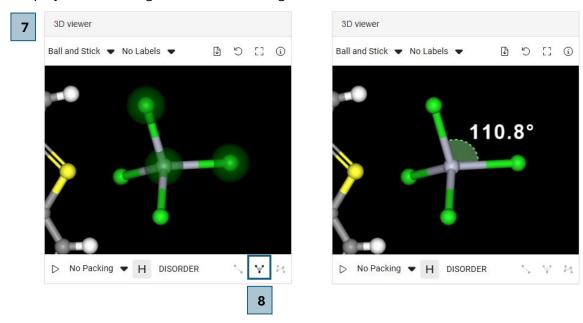
This teaching module assumes no prior knowledge of crystallography. A basic understanding of atomic structure is assumed.

2 Predicting molecular geometry

We will begin by posing a question: what shapes would you expect HgCl₂, HgCl₃⁻ and HgCl₄²⁻ to take? Without even considering atomic structure, we know that atoms surrounded by electrons, which, having the same charge, will repel one another. So, what shapes would maximise the space between the Cl atoms in this series of mercury complexes and hence minimise that repulsion. We can search for these complexes in the CSD to find out.


- 1. To get started, navigate to Access Structures at https://www.ccdc.cam.ac.uk/structures.
- 2. In the *Identifier(s)* section, type "KEYZUK, OKAJOZ, SOYPIF" (the commas are optional). These six letter codes are called *refcodes*; they are used to identify structures in the CSD.

- 3. Next to Database to search, select Entire published collection
- 4. Press Search.
- 5. In the results page, ensure the tick boxes next to the entries are enabled (click **Select all** if they are not) and click **View Selected**.



- 6. To manipulate the structure in the 3D viewer:
 - a. Left click and drag to rotate the structure.
 - b. Right click and drag to translate the structure.
 - c. Scroll up/down with the mouse wheel to zoom in/out.
 - d. At any time, hit \circlearrowleft to reset the viewer.

Do the molecular geometries match your expectations? We can assess the geometry more precisely by measuring the Cl-Hg-Cl bond angles.

- 7. With KEYZUK selected, zoom in on the $HgCl_4^{2-}$ ion. To measure the Cl-Hg-Cl angle, click on a Cl, Hg and another Cl in that order. The atoms will be highlighted in a translucent green sphere.
- 8. Click on the angle symbol in the bottom right-hand corner. The measurement will be displayed and the angle marked on with a green arc.

9. Measure the remaining five Cl-Hg-Cl bond angles and calculate the average.

- 10. Select refcode <u>SOYPIF</u> from the *Results* list, measure the Cl-Hg-Cl angles and calculate the average.
- 11. Select refcode OKAJOZ from the Results list, measure the Cl-Hg-Cl angle.

You should get the results shown in Table 1 below. You might recognise these bond angles as characteristic of tetrahedral, trigonal and linear geometries, as you would find in alkanes, alkenes and alkynes, respectively, in organic chemistry.

Table 1. Cl–Hg–Cl bond angles in selected mercury complexes.

Refcode	Molecule/ion	Cl-Hg-Cl bond angle (°)
KEYZUK	HgCl ₄ ²⁻	109.5 (average)
SOYPIF	HgCl ₃ ⁻	120.0 (average)
OKAJOZ	HgCl ₂	180.0

2.1 The VSEPR model

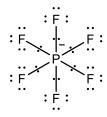
The valence shell electron pair repulsion (VSEPR) model is based upon the assumption that regions of enhanced electron density take up positions as far apart as possible to minimise repulsion. Thus, in addition to the repulsion between electrons of the outer atoms (as we saw in the series of mercury complexes previously), lone pairs and multiple bonds also need to be considered.

Let's consider the preferred geometry of a general molecule AX_m where m is the number of X ligands surrounding central atom A (Table 2).

Table 2. Common VSEPR geometries for molecules with different numbers of ligands surrounding the central atom.

Formula	Electron pairs (m)	Shape	Spatial	Ideal bond angle
			arrangement	(°)
AX_2	2	Linear	X——A——X	180
AX ₃	3	Trigonal prismatic	X X X	120
AX ₄	4	Tetrahedral	X AX	109.5

AX₅	5	Trigonal bipyramidal	X—————————————————————————————————————	90 (ax-eq) 120 (eq-eq)
AX ₆	6	Octahedral	X _{M,,,,,,,,,,,,} X X X X	90
AX ₇	7	Pentagonal bipyramidal	x—————————————————————————————————————	90 (ax-eq) 72 (eq-eq)
AX ₈	8	Square antiprismatic*	X IIII X X X X X X X X X X X X X X X X	74.9 (adjacent, within square) 74.9 (closest between top and bottom squares) 141.5 (farthest apart between top and bottom)

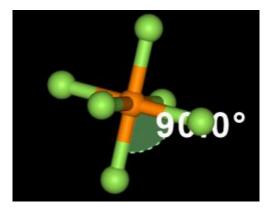

^{*} See Kepert, D.L. (1982). Eight-Coordinate Compounds Containing only Unidentate Ligands. In: Inorganic Stereochemistry. Inorganic Chemistry Concepts, vol 6. Springer, Berlin, Heidelberg.

Note that for larger coordination geometries, it is necessary to minimise the repulsive energy with a calculation to find the optimum geometry; depending on the model used this may give slightly different inter-ligand angles. Additionally, there may be several geometries with a similar minimum energy, in such cases, the VSEPR model might be less reliable as a predictor.

2.2 How to apply the VSEPR model to predict basic shape

We will illustrate how to apply the VSEPR model to predict the shape of PF_6^- . To do so, we follow these steps:

1. Draw the Lewis structure of the molecule and identify the central atom. In the case of PF_6 , this is phosphorus.


- 2. Determine the valence electrons on the central atom. Phosphorus has the electron configuration: 1s²2s²2p⁶3s²3p³ and thus has 5 valence electrons. Add to this the number of electrons that are contributed by all directly bonded atoms. For PF₆⁻ there are 6 fluorine atoms, each contributing 1 electron. Finally, add one electron to account for the single negative charge on the phosphorus. This brings the total to 12.
- 3. Divide the total number of valence electrons by 2 to give the total number of electron pairs (i.e.6) and assign the molecular geometry corresponding to this number using Table 1 in the previous section.
- 4. Hexafluorophosphate, PF₆⁻ is therefore expected to have an octahedral geometry.

The above points are summarised below.

Hexafluorophosphate PF₆

Central atom	Phosphorus	
Valence electrons on central atom	5	
Valence electrons from 6 F, each contributing 1	6	
electron		
Add 1 for negative charge	1	
Total valence electrons	12	
Divide by 2 to give number of electron pairs	6	
Octahedral geometry for the 6 shape-determining electron pairs		

Find CSD entry <u>WINFAA</u> using Access Structures and measure F-P-F angles. You will see that the *cis* bonds have bond angles very close to 90° (see below).

WINFAA

Exercise 1

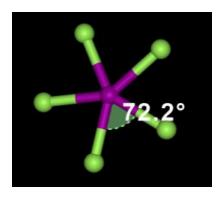
Use VSEPR theory to determine the geometry of the following molecules. Confirm that your answers are correct by examining the corresponding crystal structures. Comment on how closely the observed bond angles agree with the expected ideal values.

Molecule or ion	CSD refcode
BrF ₆ ⁻	ZAQBIC
[I ₃ -	RIKTAG
In(CH ₃) ₃	TRMEIN03
[BeF ₄] ⁻	KIPPEE
NMe ₄ ⁺	SODVOW02
SiF₅ ⁻	CINLEQ
SbF ₆ ⁻	FUJLAX

2.3 Modifications to basic shapes: considering the effect of lone pairs

The molecules you have encountered so far include only bonding pairs. How does the presence of lone pairs affect molecular shape?

Consider the molecular ion XeF_5^- . Xe is in group 18 and possesses 8 electrons in its valence shell. There are 5 fluorine atoms, each contributing 1 electron, this brings the electron count to 13. Finally, we add one electron to account for the single negative charge on the Xe. This brings the total to 14. Again, we divide this number by 2 to give the total number of electron pairs (7). The parent shape is therefore a pentagonal bipyramid (remember that we are describing the distribution of electron pairs *not* atoms at this stage).


However, once the basic shape of a molecule has been identified, adjustments must be made to account for the differences in electrostatic repulsion between bonding regions and lone pairs. Repulsions lie in the order:

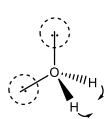
lone pair-lone pair > lone pair-bonding pair > bonding pair-bonding pair

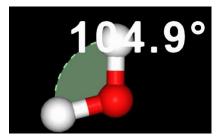
The greater repelling effect of a lone pair is explained by supposing that the lone pair is on average closer to the nucleus than a bonding pair and therefore repels other electrons more strongly. Thus, for XeF₅⁻ the parent shape (in terms of electron pairs) is a pentagonal bipyramid with the lone pairs opposite to each other in order to minimise lone pair-lone pair repulsions. The XeF₅⁻ anion is therefore pentagonal planar.

Left: XeF_5^- with lone pairs displayed. Right: XeF_5^- without the lone pairs displayed, showing the pentagonal planar geometry.

You can confirm this is the case by searching for **SOBWAH** in Access Structures (see below).

SOBWAH


A more familiar molecule, which requires the same kind of consideration is water. Search for $\underline{CYTOSM04}$ in Access Structures. Note that water is deuterated here (${}^{2}H = D$). This does not affect its chemistry but is necessary for the neutron study used to determine this structure. Measure the D-O-D bond angle in the water molecule. How would you describe the shape?

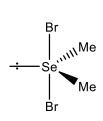

The shape clearly is not linear but can simply be described as 'bent'. To see why this should be the case, let's find the number of valence electron pairs.

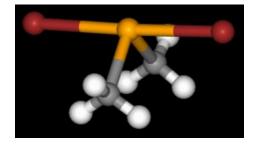
Water H₂O

1141011120	
Central atom	Oxygen
Valence electrons on central atom	6
Valence electrons from 2 ² H atoms, each	2
contributing 1 electron	
Total valence electrons	8
Divide by 2 to give number of electron pairs	4
Tetrahedral for the 4 shape-determining electron pairs	

The electron count indicates that there should be two pairs on oxygen in water, which would occupy two vertices of a tetrahedron, hence the bent shape. However, the D–O–D bond angle, 104.9° , is considerably less than the ideal tetrahedral angle of 109.5° . This can be explained by remembering the repulsion hierarchy for lone pairs and bonding pairs. Lone pair-bonding pair repulsion > bonding pair-bonding pair repulsion, so the D–O–D bond angle compresses to increase the angle between the hydrogen atoms and the lone pairs.

The relatively greater repelling power of lone pairs decreases the D-O-D bond angle below the expected 109.5° tetrahedral angle.

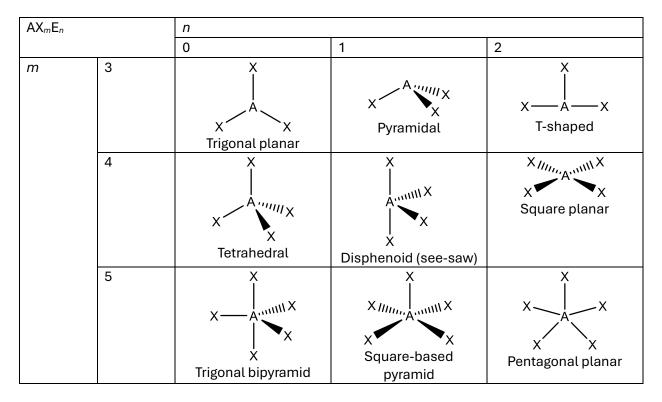

Now for slightly more complex example. Search for <u>RIZMIW</u> in Access Structures, which is dibromodimethylselenium. Can you explain its structure?


We can predict its parent structure (in terms of electrons pairs) as we have done previously.

Dibromodimethylselenium SeBr₂(CH₃)₂

	-(-/-		
Central atom	Selenium		
Valence electrons on central atom	6		
Valence electrons from 2 Br and 2 Me groups,	4		
each contributing 1 electron			
Total valence electrons	10		
Divide by 2 to give number of electron pairs	5		
Trigonal bipyramidal for the 5 shape-determining electron pairs			

According to sums, there are 5 valence electron pairs in total, 4 of which we know must be from bonding electrons. Therefore, there is one lone pair on selenium and from the crystal structure, we can see that this lone pair is effectively occupying an equatorial site of the trigonal bipyramid. Why does the lone pair go that position rather than an axial one? According to the hierarchy of lone pair and bonding pair repulsions mentioned earlier, the lone pair causes the greatest repulsion and should go in the least crowded position, which is in the trigonal plane. A lone pair in the equator makes two 90° angles with nearest neighbour ligands, whereas an axial lone pair makes three 90° angles; putting the lone pair in the equator therefore gives the least repulsion. The overall geometry is disphenoidal or "see-saw" shaped.

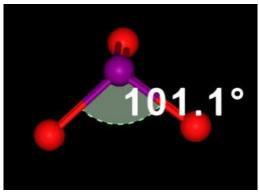


Left: dibromodimethylselenium with the lone pair displayed, showing the trigonal bipyramidal parent structure. Right: the see-saw shape that the molecule adopts in RIZMIW.

Rewriting the general formula AX_m that was used in Table 2 as AX_mE_n where the lone pairs, E, are included explicitly, we can tabulate some common geometries for structures involving lone pairs (Table 3)

Table 3. Common VSEPR geometries for molecules having ligands and lone pairs on the central atoms.

2.4 Including multiple bonds in the VSEPR model


The example we have seen so far have had either single bonds only or a combination of single bonds and lone pairs. What happens if we have double or triple bonds? How many electron pairs should we consider and how strongly do electrons in multiple bonds repel other electrons? First, let's consider the XeO_3 molecule.

Xenon trioxide XeO₃

Central atom	Xenon
Valence electrons on central atom	8
Valence electron from 3 oxygen atoms	6
Total valence electrons	14
Divide by 2 to give number of electron pairs	7

At this point, with seven electron pairs, we would expect a pentagonal bipyramidal parent structure with four vertices occupied by lone pairs. What would that look like? Depending on which positions the oxygen atoms occupied, the expected adjacent angles would be 90° (arrangement a), $90^{\circ} + 72n^{\circ}$ (n = 1, 2, arrangements b and c, respectively) or $72n^{\circ}$ (n = 1, 2, arrangements d and e, respectively).

In Access Structures, search for refcode <u>VIFKUT</u>. Measure the O–Xe–O bond angles. You should find that the bond angles are 101.1, 101.1 and 101.7°, overall giving a pyramidal geometry. This does not fit any of the structures a-e above.

XeO₃ in VIFKUT

The solution is to treat all electrons involved in the Xe=O bonds as aligned with those bonds, i.e. there are 4 electrons per Xe=O bond, and that counts as a single region of electron density. Let's modify the electron count to account for that.

Xenon trioxide

Central atom	Xenon
Valence electrons on central atom	8
Valence electron from 3 oxygen atoms	6
Total valence electrons	14
Divide by 2 to give number of electron pairs	7
Electron pairs in 3 double bonds	6
Lone pairs	1

Tetrahedral arrangement of electron pairs (one of which is a lone pair, the remaining six in 3 double bonds). Overall geometry is **pyramidal**.

In terms of repulsive power, a double bond repels more than a single bond but not as much as a lone pair. This explains why the O–Xe–O bond is less than the ideal tetrahedral angle of 109.5°.

Exercise 2

Look up CSD refcode QEZYUQ in Access Structures and measure the bond angles. How do they compare with expectations?

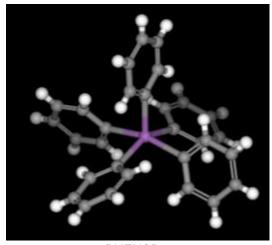
2.5 The influence of electronegativity on molecular shape

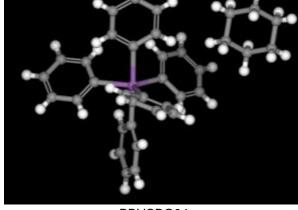
One further factor is needed to complete our understanding of the VSEPR model. VSEPR theory considers repulsion between electrons around a central atom, however, when a strongly electronegative element is bonded to the central atom, the bonding pair will be pulled closer to the electronegative element than when a less electronegative element is bonded to the central atom. This effectively take up less room in the region immediately surrounding the central atom. Where there is a clear choice of environments, the more electronegative element occupies the more crowded positions (e.g. the axial positions of the trigonal bipyramid).

Exercise 3

Look up refcodes <u>ROGYEU</u> and <u>HUWREX</u>, which are crystal structures containing NF₃ and ND₃ (D = 2 H, as before), respectively. Are the results consistent with the VSEPR rules on electronegativity?

Exercise 4


Apply the VSEPR model to the following molecules. Confirm that your predictions are correct by examining the relevant crystal structures. Comment on how closely the observed angles match those of the ideal geometry and account for any significant deviations.


Molecule/ion	CSD refcode/ICSD identifier
SO ₂	DADXOW
[CeCl ₆] ²⁻	CLCAME01
(CF ₃)Cl ₂ I	COXYIX
$Sr(py)_5Br_2$ (py = pyridine)	TANWAG
BCl ₄	PETKAB
SePh ₂ Cl ₂	PHSECL01
B(OH) ₃	JAGREP
ClF ₄	ROLSEQ
P(OPh)₅	PPHOXP
SbBr ₅	CLPYSB
[Ce(OEP) ₂] (OEP = octaethylporphyrinate)	DURLUX
XeF ₈ ²⁻	83701
XeO ₂ F ₂	10203
SMe ₃ ⁺	YUTDEY

2.6 When doesn't the VSEPR model work?

The most common situation where VSEPR theory fails in transition metal compounds. This is because transition metals have varying number of electrons in d orbitals; these d orbitals are involved in covalent bonding to different degrees depending on the molecular geometry, which can only be properly understood by molecular orbital theory. Octahedral coordination geometry dominates despite varying numbers of valence electrons (e.g. $[M(H_2O)_6]^{2+}$, where $M=1^{st}$ row transition metal). VSEPR theory can work for metal complexes with more ionic bonding, such as alkali metals and lanthanoids, where geometry is determined largely by electrostatic repulsion between the ligands, and metal-based electrons can be ignored.

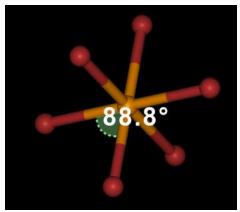
In other cases, two geometries may actually be quite close in energy (and indeed they may interconvert under some conditions). Such an example is seen for SbPh₅; CSD entry <u>PHENSB03</u> has a square-based pyramid geometry, whereas <u>PPHSBC01</u>, which contains cyclohexane in the structure, adopts a trigonal bipyramid shape. Solution NMR spectroscopy reveals only one set of resonances for the aryl groups, even at -142 °C, indicating it changes conformation very rapidly in solution.¹

PHENSB03

PPHSBC01

Lastly, put quite simply, sometimes it just doesn't work. Consider $TeBr_6^{2-}$. The electron count would be as follows:

Tellurium hexabromide dianion


Central atom	Tellurium
Valence electrons on central atom	6
Valence electron from 6 bromine atoms	6
2 electrons from charge	2
Total valence electrons	14
Divide by 2 to give number of electron pairs	7
Electron pairs in 6 bonds	6
Lone pairs	1

Pentagonal bipyramidal arrangement of electron pairs (one of which is a lone pair, the remaining six in 6 double bonds). Overall geometry is **pentagonal pyramidal**.

Now look up CSD entry YUTDEY in Access Structures and assess the geometry.

The predicted geometry is pentagonal pyramidal; however, we can see from YUTDEY that the geometry is actually octahedral. This molecule would be said to have a stereochemically inactive lone pair – a phenomenon that is not unusual for heavier elements due to relativistic effects.*

¹ B. Lindquist-Kleissler, Monica Weng, P. Le Magueres, G. N. George and Timothy C. Johnstone, *Inorg. Chem.*, 2021, **60**, 8566–8574 DOI: 10.1021/acs.inorgchem.1c00496.

TeBr₆²⁻ in YUTDEY

*This is beyond the scope of this teaching module. Simplistically, it is because the increased mass of the nucleus causes some electrons to orbit close to the speed of light; it tends to affect s electrons more than p or d electrons and the result is that the s electrons become less involved in bonding.

3 Summary

In this teaching module we have seen how the geometries of many molecules can be predicted using VSEPR theory, a model based on electrostatics. Bonding and lone pair electrons are assumed to surround the central atom and to repel one another. Minimising this repulsion gives a geometry determined by the number of electron pairs present. The model is completed by considering the repulsion hierarchy lone pair-lone pair > lone pair-bonding pair > bonding pair-bonding pair, with further refinements where multiple bonds and electronegativity differences are important. The model is quite successful at predicting the geometries of main group compounds and non-transition metals but does not always work for heavier elements and rarely works for transition metal complexes.

3.1 Next steps

If you would like to study the structures presented in this teaching sheet further, we suggest viewing them in Mercury, where you can customize the view of the molecules and make more advanced measurements. A free-for academic use version of Mercury is available for educational use. To learn more about Mercury, we recommend trying the online module "Visualization 101 – Visualizing Structural Chemistry Data with Mercury". You can find the structures used in this module in the Teaching Subset, which is pre-loaded into Mercury. See the links below for more information.

https://www.ccdc.cam.ac.uk/solutions/software/free-mercury/

https://www.ccdc.cam.ac.uk/community/training-and-learning/csdu-modules/visualization-101/

https://www.ccdc.cam.ac.uk/community/education-and-outreach/education/teaching-subset/

If you wish to explore the CSD further and search for structures of interest to you, you can find a number of training resources, including self-guided workshops, online courses and videos to you get started from the CCDC's Training and Learning Web pages.

https://www.ccdc.cam.ac.uk/community/training-and-learning/

3.2 Acknowledgements

We would like to thank Professors Alice Brink and Marietjie Schutte-Smith (University of the Free State, South Africa) and Professor Sally Boss (University of Cambridge, UK) for providing helpful feedback on this teaching module.

4 Answers to exercises

Exercise 1

Molecule or ion	CSD refcode	Geometry	Angle range (°)
BrF ₆ ⁻	ZAQBIC	Octahedral	88.6-91.8
l ₃ -	RIKTAG	Linear	180.0
In(CH ₃) ₃	TRMEIN03	Trigonal planar	116.2-124.1
[BeF ₄]	KIPPEE	Tetrahedral	108.6-110.5
NMe ₄ ⁺	SODVOW02	Tetrahedral	109.4-109.5
SiF ₅ ⁻	CINLEQ	Trigonal bipyramidal	89.6-90.3 (eq-ax)
			117.5-121.2 (eq-eq)
SbF ₆ ⁻	FUJLAX	Octahedral	89.0-91.4

Each of these examples has the geometry expected for the given number of valence electron pairs. The range of bond angles is generally small and in line with the expected geometry, although TRMEIN03 and SiF_5^- , both show a greater range on bond angles in the trigonal plane. This is likely because the space between atoms is greater in the trigonal plane, so the bond angles can vary slightly without a significant increase in repulsion.

Exercise 2

According to the rules for counting double bonds, we predict the following for XeOF2

Xenon oxydifluoride XeOF₂

Central atom	Xenon
Valence electrons on central atom	8
Valence electron from 1 oxygen atom and 2	4
fluorine atoms	
Total valence electrons	12
Divide by 2 to give number of electron pairs	6
Electron pairs in 1 double bond + two single	4
bonds	
Lone pairs	2

T-shaped based on a trigonal bipyramidal parent arrangement with two vertices occupied by lone pairs.

There are two independent XeOF $_2$ molecules in QEZYUQ; we shall use the molecule containing Xe1 for this discussion. The F-Xe-O bond angles are 94.0 and 90.1°, whereas F-Xe-F is 171.9°. The molecule conforms to the expected T-shape, with oxygen occupying the equatorial position of the parent trigonal bipyramidal structure. The relative repelling power: lone pair > multiple bond > single bond is consistent with the oxygen atom in the equatorial position of the parent trigonal bipyramid structure, together with the two lone pairs. The F-Xe-O bond angles are obtuse, which is perhaps surprising as we might expect repulsion from the lone pairs to make them acute. For comparison, in the cation XeF_3^+ from ICSD entry 6034, the equivalent angles are acute (around 81°), which is consistent with this hypothesis.

Exercise 3

The bond angles in NF $_3$ in ROGYEU are around 102°, whereas the bond D-N-D angles in ND $_3$ in HUWREX are in the range 106–108° (average 107.1°). This can be explained by the relative electronegativities of fluorine (χ_P = 3.98) and hydrogen (χ_P = 2.20). The more electronegative fluorine pulls the bonding pair closer to itself than hydrogen does, reducing repulsion and along the fluorine atoms to be forced closer together by the lone pair repulsion.

Exercise 4

Molecule/ion	CSD refcode	Angles range (°)	Comments
SO ₂	DADXOW	113.0-114.2	Bent geometry based off trigonal parent shape with 1 lone pair. O–S–O angle < 120° as lone pair-bonding pair repulsion is strongest.
[CeCl ₆] ²⁻	CLCAME01	88.3-91.7	Octahedral as expected for 6 electron pairs. Ce ⁴⁺ has no valence electrons.
(CF₃)Cl₂I	COXYIX	171.6 (Cl-I-Cl) 82.9-88.7 (Cl-I-C)	T-shaped geometry based off trigonal bipyramid with 2 lone pairs. Lone pairs occupy equator as expected and lone pair-bonding pair repulsion makes Cl-I-Cl <180°.
$Sr(py)_5Br_2$ (py = pyridine)	TANWAG	177.9 (Br-Sr-Br) 70.6-73.6 (N-Sr-N) 85.3-91.4 (N-Sr-Br)	Pentagonal bipyramidal geometry. Sr ²⁺ has no valence electrons, and each ligand can be considered to donate a lone pair to Sr. The nitrogen atoms have a smaller radius and thus go in the equatorial sites where the inter-bond angles are < 90° allowing Br to take up the less crowded axial positions.
BCl ₄	РЕТКАВ	109.0-110.2	Tetrahedral geometry. All bonding pairs; angles are ideal.
SePh ₂ Cl ₂	PHSECL01	175.0 (ax-ax) (in direction pointing away from molecule) 92.4 (ax-eq) 100.4 (eq-eq)	See-saw geometry based off trigonal bipyramidal parent arrangement with one lone pair. The C-Se-C angle is < 120° consistent with enhanced repulsion by the lone pair but Cl-Se-Cl is < 180° in the direction away

			from the molecule. This is
			unexpected based on just
			the sizes of C and Cl alone,
			though the phenyl groups as
			a whole take up a lot of
			space.
B(OH) ₃	JAGREP	119.0-120.2	Trigonal planar geometry
B(O11)3	JAGNEF	119.0-120.2	with ideal bond angle as
			expected for compound with
			three bonding electron pairs.
ClF ₄ -	ROLSEQ	88.9-91.2	Square planar geometry
Otr ₄	NOLSEQ	00.9-91.2	based off octahedral parent
			I -
			arrangement with two lone
			pairs. Ideal bond angles. The
			lone pairs occupy the axial
			positions to minimise lone
D(ODL)	DDLIOVD	170 5 (pair-lone pair repulsion.
P(OPh)₅	PPHOXP	176.5 (ax-ax)	Trigonal bipyramidal
		114.9-126.2 (eq-eq)	geometry as expected with
		88.0-92.2 (ax-eq)	only bonding pairs. Small
			deviations from ideal bond
			angles likely due to
OL D. 2-	OL DVOD	07.0.00.47	conformation of aryl rings.
SbBr ₅ ²⁻	CLPYSB	87.0-92.4 (in square	Square-based pyramidal
		plane)	geometry based off
		87.5-92.9 (apex-	octahedral parent geometry
		square plane)	with one lone pair. Bond
			angles close to the expected
			90° for this geometry. No
			clear evidence of asymmetry
10 (055) 1 (055	51151107		from lone pair presence.
[Ce(OEP) ₂] (OEP =	DURLUX	71.0-72.7 (in	Square antiprismatic
octaethylporphyrinate]		square)	geometry. Ce ⁴⁺ has no
			valence electrons remaining
		77.3-81.4 (nearest	and we can consider each N
		neighbours between	atom to donate an electron
		squares)	pair. The 'cis' angles within
			the squares are compressed
		139.7-146.1(farthest	compared to the ideal angle
		between squares)	(74.9°) and other angles are
			changed accordingly. This
			could be explained by
			repulsion between the large
			framework of the porphyrin
_			ligands.
XeF ₈ ²⁻	83701	73.7–75.5 (in square)	Square antiprismatic
			geometry based on 8

		75.4–78.0 (nearest neighbours between squares) 140.8–143.9 (farthest between squares)	bonding pairs. In comparison to example [Ce(OEP) ₂] (DURLUX) above, the bond angles are closer to those expected for this geometry, which we can attribute to the constraint of the nitrogen atoms within the porphyrin in DURLUX compared to the greater freedom of the F atoms in XeF ₈ ²⁻
XeO ₂ F ₂	10203	105.7 (O-Xe-O) 174.7 (F-Xe-F) 91.6 (O-Xe-F)	See-saw geometry based on a trigonal bipyramidal parent geometry with an equatorial position occupied by a lone pair. The positioning of the doubly bonded oxygens in the equatorial plane and the fluorine atoms in the axial positions is in line with predictions, taking into account (1) the greater repelling power of double bonds relative to single bonds and (2) the higher electronegativity of fluorine favouring the less congested axial positions. The O-Xe-O bond angle is < 120°, as predicted.
SMe ₃ ⁺	YUTDEY	101.2°	Pyramidal geometry based on a tetrahedral parent geometry with one vertex occupied by lone pair. Bond angle < 109.5°as expected based on lone pair-bonding pair repulsion.