
Special cases

Anomalous dispersion

Extinction

Violation of systematic absences

If things went wrong…

CHM 6450



• Absolute Configuration : spatial arrangement of the atoms 

for a chiral molecule (R/S, P/M, D/L, (+)/(-) or D/L

assignment).

• Absolute Structure : spatial arrangement of atoms in a non-

centrosymmetric crystal structure (unit-cell, space group) 

• Polar space group : Non-centrosymmetric space group 

containing mirror plans. E. g. : Pc, Pna21 

• Chiral space groups / Sohncke space groups : Space 

groups containing no inversion center, mirror or glide planes. 

E. g. P1, P21, P31, P41

• Enantiomorph: The mirror image of a chiral crystal

• Enantiomorphic space group: A space group whose mirror 

image is not the same space group. E. g. P41|P43, but not P1 

or P21



In the solid state

• Chiral molecules can crystallize as an enantiopure bulk 

sample or as a racemic mixture.

• Enantiopure compounds/enantiopure crystals  Space 

group restriction:

– Only 65 space groups allowed (chiral or Sohncke space groups)

– No inversion centers / no mirror planes / no glide planes

adapted from: Thierry Maris, 3rd CCW 2012

– These include 11 pairs of enantiomorphic space groups (screw 

axes of opposite handedness). For these, inversion of the crystal 

generates another space group. 

Triclinic: P1   

Monoclinic: P2   P21 C2   

Orthorhombic: P222   P2221 P21212   P212121 C2221 C222   F222   I222   I212121

Tetragonal: P4   P41 | P43 P42 I4   I41 P422   P4212 P4122 | P4322 P41212 | P43212   P4222   P42212   I422   I4122   

Trigonal: P3   P31 | P32 R3   P312   P321   P3112 | P3212 P3121 | P3221 R32   

Hexagonal: P6   P61 | P65 P62 | P64 P63 P622   P6122 | P6522   P6222 | P6422 P6322

Cubic: P23   F23   I23   P213   I213   P432   P4232   F432   F4132   I432   P4132 | P4332   I4132



Racemic mixtures in the solid state

1) Conglomerate: a mixture of well-resolved crystals of both 

enantiomers

– Chiral space group 

– Individual crystals are

enantiopure and have 

optical activity 

2) Racemate:  Each crystal contains both enantiomers in 

equal amounts. 

– No optical activity

– All space groups possible

– Typically centrosymmetric 

space group

adapted from: Thierry Maris, 3rd CCW 2012



Racemic mixtures in the solid state

3) Inversion twin: twinned crystals of both enantiomers

– Chiral space group

– Ratio of enantiomers not necessarily 1:1

4) Disordered solid-solution:  Crystal containing the two 

enantiomers in a disordered arrangement.

– Usually centrosymmetric 

space group

adapted from: Thierry Maris, 3rd CCW 2012



Louis Pasteur (1848): Separation of the two enantiomers by 

the visual sorting of crystals of a conglomerate

D-(-) levotartaric acid L-(+) dextrotartaric acid Sodium ammonium tartrate crystals

adapted from: Thierry Maris, 3rd CCW 2012



P21
P21/c

adapted from: Thierry Maris, 3rd CCW 2012



Powder diffraction
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The two eniantopure samples and the conglomerate give the

same powder X-ray diffraction pattern
adapted from: Thierry Maris, 3rd CCW 2012



Powder diffraction
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adapted from: Thierry Maris, 3rd CCW 2012

But the conglomerate and racemate have 

different space groups and powder 

diffraction patterns



Polar structures

Achiral molecules can crystallize in chiral and non-

centrosymmetric space groups. While the molecule is not

chiral, their spatial arrangement in the crystal is chiral.

Helical arrangement of SiO4 tetrahedra in a-quartz (P3121)

adapted from: Thierry Maris, 3rd CCW 2012



How do we determine the absolute 

configuration ?

• Method 1 : Internal chiral reference

• Method 2 : From absolute structure 

(anomalous dispersion)

adapted from: Thierry Maris, 3rd CCW 2012



Absolute configuration from 

an internal chiral reference

Co-crystallisation with a compound of known 

absolute configuration

Iding et al., 

Tetrahedron Asymmetry 14 (2003) 1541-1545
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adapted from: Thierry Maris, 3rd CCW 2012



Anomalous dispersion

Again: Friedel law
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Anomalous dispersion – non-centrosymmetric
• If the wavelength of the X-rays is close to an excitation energy of an atom, we

observe a resonance effect which influences the amplitude and the phase of our

diffracted photon.

X-ray absorption and emission:
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Anomalous dispersion – non-centrosymmetric

Pictures from : Physical and Non-Physical Methods of Solving Crystal Structures by Michael M. Woolfson, Fan Hai-Fu

• If the wavelength of the X-rays is close to an excitation energy of an atom, we

observe a resonance effect which influences the amplitude and the phase of our

diffracted photon.

• We can describe this effect with two correction factors: f = fatomique + Df’ + i·Df”. 

• The real part of the anomalous scattering factor, Df’, can be positive (0 ° phase shift) or 

negative (180° phase shift). Close to an absorption edge, Df’ becomes negative and 

can be related to X-ray absorption. 

• The imaginary part of the anomalous scattering factor, Df”, has a phase shift of 90° and 

is always positive, large close to the absorption edge and zero at energies lower than 

the absorption edge.



Anomalous dispersion – non-centrosymmetric
• If the wavelength of the X-rays is close to an excitation energy of an atom, we

observe a resonance effect which influences the amplitude and the phase of our

diffracted photon.

• We can describe this effect with two correction factors: f = fatomique + Df’ + i·Df”. 

• The real part of the anomalous scattering factor, Df’, can be positive (0 ° phase shift or 

negative 180° phase shift). Close to an absorption edge, Df’ becomes negative and can 

be related to X-ray absorption. 

• The imaginary part of the anomalous scattering factor, Df”, has a phase shift of 90° and 

is always positive, large close to the absorption edge and zero at energies lower than 

the absorption edge.

Element C Si V Fe Co Ni Cu Zn

Z 6 14 23 26 27 28 29 30

Abs. edge «1 keV 1.8 keV 5.5 keV 7.1 keV 7.7 keV 8.3 keV 9.0 keV 9.7 keV

Δf′ 0.017 0.244 0.035 -1.179 -2.464 -2.956 -2.0255 -1.6142

Δf′′ 0.009 0.330 2.110 3.204 3.608 0.509 0.5885 0.6774

Cu Ka radiation = 8.014 keV

Scattering factors for Cu Ka radiation

from the next

absorption edge



Anomalous dispersion – non-centrosymmetric

• We can describe this effect with two correction factors: f = fatomique + Df’ + i·Df”. 

• Close to an absorption edge, Df’ becomes negative and can be related to X-ray 

absorption. The imaginary Df” is positive at a phase 90° from that of f.

• As a consequence, the Friedel law is not valid anymore!

f1(H)

f1(-H)

Df’1(-H)

Df’’1(-H)

Fhkl

F-h-k-l 22
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Anomalous dispersion – non-centrosymmetric
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Inversion center : For each atom j with x,y,z and phase , there is an atom 

with -x,-y,-z and thus phase -.
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Anomalous dispersion – centrosymmetric



Anomalous dispersion– wavelength dependance

Anomalous dispersion can normally be observed experimentally when the

wavelength is close to an absorption edge (lisière d’absorption), i. e. the energy

of the X-ray photon is close to an electronic excitation of one of the elements

present.

Cu Ka (1.54 Å) Mo Ka (0.72 Å) Ga Ka (1.34 Å)

Df’ Df’’ m/r Df’ Df’’ m/r Df’ Df’’ m/r

C 0.018 0.009 5 0.003 0.002 0.56 0.013 0.007 2

O 0.049 0.032 12 0.011 0.006 1.2 0.036 0.024 5

Co -2.365 3.614 321 0.349 0.972 41 –0.711 2.90 184

Ni -3.003 0.509 49 0.339 1.112 47 –1.374 3.27 209

Cu –1.965 0.589 52 0.320 1.265 49 –2.819 3.68 216

For Mo Ka radiation the presence of one Ni atom is equivalent (with regard to 

anomalous dispersion and determination of the absolute configuration) to the 

presence of 500 carbon atoms!

Anomalous dispersion for light atoms is stronger for Cu than for Mo radiation. Cu is 

the preferred choice for determining the absolute structure of organic compounds.

Note that the position of absorption edges differ for each radiation. While Co has a 

much higher absorption coefficient (and anomalous dispersion) for Cu than for Mo 

radiation, the values for Ni are nearly equivalent, since Ni is found just behind an 

absorption edge.



Determination of absolute configurations

Old method: Compare the R-values of a structure with its inverted structure

Today: We use the Flack-x parameter, which refines to give the ratio of a crystal 

or its inversion twin which fits best the observed intensities. 

x = 0: correct absolute configuration

x = 1: inverted absolute configuration 

0 < x < 1: racemic twin

222
)()()1(),( HFxHFxxHF 

Chiral space groups (P1, P212121, …) :

• Either no symmetry elements or only rotations

• May contain optically pure compounds

• Flack parameter has to be calculated

Polar space groups (Pm, Pna21, …) :

• Contain mirror planes, but no inversion center

• May contain only achiral molecules or racemic mixtures

• Flack parameter has to be calculated

Centrosymmetric space groups:

• Flack parameter is not defined, since |F(H)|2 = |F(-H)|2



When is the Flack parameter reliable?

http://www.gtecs.rwth-aachen.de/acmu/unterlagen/SParsons_Muelheim_2013.pdf

Correct structure Inverted structure1:1 Racemic twin

For the correct structure to be more likely than a racemic 1:1 twin, the Flack parameter 

should be 0 ± 3/12, i. e. the esd should be smaller than 0.1. If the esd of the Flack 

parameter is >0.1, e. g. 0.02(14), the absolute structure cannot be determined.



Flack parameter calculation in SHELXL97

If the space group is non-centrosymmetric (chiral or polar), SHELXL97 estimates 

the Flack parameter by a fast refinement of the OSF (overall scale factor) and the 

Flack-parameter at the end of the refinement cycle. Only those two are refined 

against each other. This is undertaken to warn the user that he might have the 

wrong stereochemistry. The obtained value is not the correct Flack parameter!

To include the Flack parameter in the refinement, we have to introduce the following 

two commands in the ins-file:

TWIN

BASF 0.4

TWIN without any other data assumes the presence of a racemic twin. The

refinement of the BAtch Scale Factor for a racemic twin is identical to the Flack

parameter. Refinement without BASF – TWIN might yield wrong values, in particular

for the standard deviation of the Flack parameter, such as x = 0.23(32). For non-

centrosymmetric space groups TWIN – BASF 0.4 must be used during the

refinement!



Flack parameter in SHELXL2014 / Parsons’ quotient

Later work has shown that determination of the Flack parameters using quotients 

(Parsons’ method) eliminates systematic errors in the dataset and yields lower

uncertainities for the Flack parameter. (Parsons, S., Flack, H. D. & Wagner, T. Acta 

Cryst. 2013, B69, 249)

The Flack x parameter is

still defined according to 

Using now quotients of the differences of Friedel pairs, one obtains

With this can be written as

hklhklhkl
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The Flack parameter in SHELXL2014 / Parsons’ quotient

calcobs QxQ )2( According to

a plot of the quotient 

obtained from the 

measured intensities 

versus the quotient 

obtained from 

calculated intensities 

yields a line with a 

slope of 2-x. Simple 

linear regression 

thus yields the 

Flack-parameter x.

(Sometimes also 

called Parsons’ z.)

Parsons, S., Flack, H. D. & Wagner, T. Acta Cryst. 2013, B69, 249



The Flack parameter in SHELXL2014 / Parsons’ quotient

Parsons, Flack and Wagner showed that the quotient method determines the Flack-

parameter with a lower statistical error than the direct refinement. 

They also showed that this determination is stable as a post-refinement method, i. e. 

the Flack parameter does not have to be included in the refinement cycle. Thus, 

determination of the correct Flack parameter using Parsons’ quotient does not require

a BASF/TWIN command anymore. The latter should still be used, however, if a 

racemic twin is indeed present.

Parsons, S., Flack, H. D. & Wagner, T. Acta Cryst. 2013, B69, 249



The Hooft parameter y

A different approach to dermine the Flack parameter uses Bayesian statistics, i. e. 

the determination of the probability that you have the correct structure. 

• R. W. W. Hooft, L. H. Straver, A. L. Spek J. Appl. Cryst. 2008, 41, 96 

and J. Appl. Cryst. 2010, 43, 665

Friedel pair: a pair of reflexions related by inversion symmetry, i. e. Ihkl and I(-h)(-k)(-l).

Bijvoet pair: a pair of reflexions, whose true symmetry equivalents are Friedel pairs. 

E. g. for Pm we have 

Ihkl = Ih-kl and   I-h-k-l = I-hk-l

We thus have the following Bijvoet pairs: 

Ihkl | I-h-k-l,     Ihkl | I-hk-l,     Ih-kl | I-h-k-l,     Ih-kl | I-hk-l. 

The Friedel law (and repective anomalous dispersion differences) apply to Bijvoet pairs 

in the same way as to Friedel pairs. Since Friedel pairs are always Bijvoet pairs, but 

not all Bijvoet pairs are Friedel pairs, we have (above the triclinic space groups) always 

more Bijvoet pairs than Friedel pairs.



The Hooft parameter y

Correct structure Inverted structure

120 130

DIobs = Iobs(hkl) - Iobs(-h,-k,-l) 

DIcalc(x=0) = 121 DIcalc(x=1) = 127

DIobs = 123(2)

Observed reflection: DIhkl = 123(2). For the model, we calculate DIcalc = 121, for the 

inverted model DIcalc = 127. The probability that the model is correct for this reflection

can be expressed by  
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The Hooft parameter y

The probability that the whole model is correct, is obtained by multiplication 

of all probabilities of the observed Bijvoet differences:
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Some statistics follows (look up the 2008 paper): Probability p is calculated for a 

continuum of x = 0..1 with Bayesian statistics and the result interpreted as a 

Gaussian probability distribution, centered around the Hooft parameter y

(analogous to x).

In case of poor data with systematic errors, the error distribution is not Gaussian. In 

2010 Hooft et al. improved their method by using a student-t distribution instead of a 

Gaussian distribution to interprete their obtained probability distribution.



Comparison of the methods

R-2-methylpiperazine

J. Reibenspiess, N. Bhuvanesh 

Acta Cryst. B, 2013 B69, 288 



How to calculate these values and how to 

invert a structure
• SHELX2012 will automatically calculate the Flack parameter using Parsons’ 

quotient.

• OLEX2 will calculate the Flack parameter using Parsons’ quotient and the Hooft

y parameter. (For student distribution, go to INFO - Bijvoet Differences 

Probability Plot)

• Platon will calculate the Flack parameter using Parsons’ quotient (also called 

Parsons’ z) and Hooft for Gaussian and student distribution.

How to invert the structure if the Flack parameter refines to 1:

- Either use the command “inv –f” in OLEX (my preferred choice)

- or introduce the command MOVE 1 1 1 -1 in the ins file

Attention: For enantiomorphic space groups, inversion of the structure requires 

changement of the space group.

Attention: There are a few cases, where inverting the structure at the origin does 

not work. These are (see SHELX manual):
Fdd2 MOVE .25 .25 1 -1 I41cd MOVE 1 .5 1 -1

I41 MOVE 1 .5 1 -1 I-42d MOVE 1 .5 .25 -1

I4122 MOVE 1 .5 .25 -1 F4132 MOVE .25 .25 .25 -1

I41md MOVE 1 .5 1 -1



If the absolute structure is important

• Higher itensities normally equate lower errors in the 

Flack parameter. Thus try to choose the biggest crystal.

• Redetermination with a second crystal lowers the chance 

that you picked the wrong enantiomer by chance. 

• Single crystals chosen from a high-yield re-crystallization 

are more reliable than to use the two single crystals 

which were the only ones crystallizing.

• In particular if crystallization yield is low, measure the 

powder diagramm of your bulk sample and compare to 

the one calculated from your structure determination to 

exclude the presence of two phases.



Special cases

Anomalous dispersion

Extinction

Violation of systematic absences

If things went wrong…

CHM 6450



Primary extinction

• Weakening of the diffracted beam due 

to repeated diffraction (aggravated by 

destructive interaction with double-

diffracted beams) 

• Only in prefect crystals

• Difficult to describe (dynamic scattering)

• Might reduce I~|F|2 down to I~|F| in 

extreme cases

Secondary extinction

• Weakening of the primary beam due to 

precedent diffractions

• Particularly important in perfect crystals

• Comparable to absorption effects

Extinction



How to correct extinction during the refinement

Warning signs of extinction: |Fobs| < |Fcal| for reflections with high intensity. 

SHELXL (XL) will print a warning, should refinement of an extinction correction be 

required (.lst file and screen output during refinement). 

Extinction treatment in SHELXL: The command EXTI [x] refines an extinction 

parameter x. Extinction correction is done by the following formula:
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This correction is purely empiric, but it works reasonably well.

Attention: There are a lot of other effects which will cause |Fobs| < |Fcal|! The

EXTI command should thus be introduced only as the last step of the refinement

(after hydrogen atoms etc.), when still needed. Should the extinction factor refine to

0 (in the margin of its error), you should better remove it from the refinement.

We can reduce the extinction by increasing the mosaic structure of our crystals, i. e. 

by dipping them shortly in liquid nitrogen. This is not a standard procedure for 

molecular crystals! (In other words: do not do this to your crystals.)



Mosaic structure

Perfect long-range crystalline order is observed only in special cases, for example

in purified superconductor materials. “Real” crystals have a mosaic structure: only

small domains show perfect crystalline order, but these perfect domains are slight

offset from each other by 1-2°.

The mosaic structure is the main reason for peak broadening in X-ray diffraction.



Special cases

Anomalous dispersion

Extinction

Violation of systematic absences

If things went wrong…

CHM 6450



Renninger effect

• One reason why systematic absences might be violated

• A diffraction at plane hkl is obtained by double diffraction at h’k’l’ and (h-

h’)(k-k’)(l-l’).

• The Renninger effect is noticeable only, when the two reflections h’k’l’ 

and (h-h’)(k-k’)(l-l’) are strong and the reflection hkl is weak (e. g. 

systematically absent)

• Rotation around Y (perpendicular to the hkl plane) moves planes h’k’l’ 

and (h-h’)(k-k’)(l-l’) out of their reflection condition and destroys the 

Renninger effect. 

Werner Massa Crystal 

Structure Determination 2002
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/2 effect

The majority of monochromators are based on interference, i. e. diffraction, to

monochromize X-ray light. Due to the Bragg law

we find reflections of the order n of light with wavelengths /n at the same 

angle.

Ka radiation of the wavelength  is thus always accompanied by a small

pourcentage (< 0.3%) of radiation with the wavelength /2.

A reflection hkl is thus always superimposed with a reflection 2h,2k,2l for /2.

This is normally not a problem due to the small intensity of the /2 radiation

(<0.3% /2), but it becomes noticeable when the reflection 2h,2k,2l is strong

and the reflection hkl weak, i. e. systematically absent.

Correction: We normally do not correct for /2 effects. If we want to, we have to

determine the amount of /2 radiation using a (perfect) standard crystal.

 ndhkl sin2



Special cases
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My R-value is too high…

What is too high? 

Compare R1 to Rs. (in the CIF Rs = _diffrn_reflns_av_unetI/netI)

• If R1 < Rs, your problem is your crystal

(signal/noise). Go back to the lab, re-crystallize

and stop bothering crystallographers!

• If R1 > Rs, your problem is not the crystal. Try

to find out where the problem is.  



Verification tools in OLEX

Olex2 offers under INFO – Reflection Statistics several plots, which allow us to 

evaluate our reflection data. While worthwhile looking at, we normally do not 

have to bother if R1 is well below 5% or if R1 is well below Rs.

Wilson plot

The Wilson plot shows 

the observed

intensities plotted

against those

expected for a random

distribution of atoms. It 

should be (roughly) a 

straight line for small

molecular

crystallography. 

Strong variation from a straight line indicate areas of high order and less order 

(large amounts of disordered solvent). From the slope of the line we can determine 

the overall temperature factor B, which should be <3 for a low temperature structure 

in the absence of strong disorder.



Verification tools in OLEX - Cumulative Intensity

This shows the distribution of (normalized) intensities (E-values). Typically centered 

structures have a larger probability to have very intense or very weak reflections. 

Comparison of the observed intensities with theoretical curves indicates if a structure 

is centric or acentric. Deviations from the expected distribution might indicate 

problems.



Verification tools in OLEX – Fobs vs. Fcalc

Plotting observed vs. calculated structure factors should yield a straight line with a 

slope of 1. Outliers are easily identified (hover over the data point with the mouse) 

and indicate problems with these reflections (-> OMIT). A curvature or slopes 

larger or smaller than 1 might indicate systematic problems (absorption, cutting of 

too intense reflections, extreme disorder, twinning…)



Verification tools in OLEX – Fobs/Fcalc

Similar to Fobs vs. Fcalc, but deviations are easier to see. The ratio Fobs/Fcalc can be 

plotted against d-spacing,  or sin  /. It should be 1 with minor variations. A 

systematic variation of Fobs/Fcalc in dependence of the resolution indicates problems 

with the data set (insufficient absorption correction, excessive disorder, twinning, …)



Verification tools in OLEX – normal probability
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The normal probability plot shows how well the observed differences Fobs/Fcalc confirm to a Gaussian 

distribution expected for random errors. Systematic errors typically lead to deviations from linear behaviour. 

Even for good structures, this can often be seen. As long as the normal probability plot remains linear in the 

central part and symmetrical, this normally does not indicate a problem. Attention: the normal probability plot is 

highly sensitive towards the weighing scheme. Make sure to have refined it correctly.



Verification tools in OLEX – R1 vs. resolution

Due to the generally lower intensities of reflections at high  angle, the R-factor 

should increase steadily (in a slight exponential) with resolution. (OLEX can plot this 

either vs. , sin /, or d-spacing.) Any maxima in this curve would indicate severe 

problems with the data set which mostly likely effect a limited number of runs. 



Case examples

Most Disagreeable Reflections (* if suppressed or used for Rfree).

h   k   l        Fo^2        Fc^2  Error/esd Fc/Fc(max)  Res.(A)

1   0   1    33576.17    59459.27      10.52       0.853       8.36

0   1   1    37131.57    64288.11      10.13       0.886       8.14

0   1   3    48300.14    81807.84       9.75       1.000       4.70

2   0   0    38854.66    50922.42       4.91       0.789       4.85

1  -2   1    52253.97    73802.34       4.79       0.950       4.43

-1   1   0    24758.15    31810.84       4.73       0.624       7.12

-1   2   4       64.12       19.68       4.67       0.016       2.96
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Decent structure, but three strongly disagreeable reflections. Fobs-Fcalc plot shows that the most intense 

reflections are suppressed, which might indicate extinction problems or detector saturation problems. The normal 

probability plot is not symmetric. In cases which a few, clearly outlying reflections which share a common

characteristic, we can suppress them using the OMIT command.



without EXTI with EXTI

In this case, however, simple adding an EXTI command for extinction 

correction already reduces the problem.
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without OMIT with OMIT

If EXTI would not have helped, we could suppress the worst reflections with OMIT.



In case of strong disorder, the Cumulative 

Intensity plot might be depressed and 

Fobs/Fcalc decreases at higher resolution. (At 

high resolution disordered atoms show 

complete destructive interference.) Note that

there is no notable influence on the probability

plot.



After application of SQUEEZE, the disorder effects on Cumulative Intensity and 

Fobs/Fcalc mostly vanished

Attention: this was a demonstration on the effects of strong disorder. You should 

not use these plots as a justification to use SQUEEZE. 



unsymmetric 
probability plot

Clearly something fishy is going on here. Fobs vs. Fcalc is curved with increasing

intensity at higher resolution. The probability plot is unsymmetric. The reason for this

behaviour is not clear (yet), but clearly the dataset has problems.

One explanation might be strong 

absorption (this was a copper complex 

on Ga). At higher  angles the 

pathway in the crystal is shorter and 

absorption is lower. SADABS should 

have corrected for this, but eventually 

not sufficiently.



Bottom line:

• Take the habit to check the statistics plot even for 

problem-free structures to establish your 

personal baseline of “How they should look like”. 

• Not every deviation indicates a problem.

• If the R-value remains inexplicably high and you 

see problem indications in the statistical plot, you 

might want to verify your integration, absorption 

correction etc.


