Ensemble Docking with GOLD (GLD-002)

Developed using 2025.1 CSD Release

Table of Contents

Ensemble Docking	2
Learning Outcomes	3
Pre-required Skills	3
Materials	3
Provided Input Files	3
Case Study	4
Introduction	4
Superimposing Protein Structures	6
Protein Setup	9
Exploring the Ligand for Ensemble Docking	10
Defining the Binding Site	10
Selecting Ligand(s) for Docking	11
Setting Water in the Binding Site (Active Waters)	12
Setting Ligand Flexibility	14
Setting Docking Parameters	15
Selecting a Fitness Function	15
Specifying GA Settings	15
Run the Ensemble Docking	16
Analysing Docking Results	18
Visualising Docking Results	18
Conclusions	20
Next Steps	20
Feedback	20
Glossary	21
Basics of Hermes Visualisation	23

2

Ensemble Docking

In the last decade, the importance of being able to model protein flexibility has been widely recognised¹. The incorporation of receptor flexibility in automated *docking* algorithms enable more accurate binding pose prediction and better virtual screening enrichments, in addition to providing a more realistic description of the physics of the protein-ligand binding interaction.

Diverse methodological approaches have been proposed; some of these treat flexibility explicitly, allowing extra degrees of freedom in the search space to perform direct changes of the <u>binding site</u> conformation. In contrast to explicitly modelling flexibility, so-called "ensemble docking" methodologies aim to address the issue of protein flexibility by adding multiple conformations of the target protein rather than just the single rigid receptor structure used in standard docking (Figure 1). This ensemble of protein conformations mimics the conformational equilibrium which characterises the native state of the target protein and provides a structural degree of freedom by which the conformation of the protein model may be matched to fit any particular ligand. There are several cases in which the <u>ensemble docking</u> approach can be useful:

- Using crystal structures of the same target that are isolated and/or cocrystallised with various ligands to account for induced fit and explore the potential flexible range of the receptor site.
- Using snapshots of the protein across molecular dynamic runs to explore possible conformations across time.
- Using crystal structures from various groups of the same protein-ligand complex to account for technique differences.

In all cases, <u>GOLD</u> will look for the best single protein-ligand docking result, it does not treat the set in any kind of 'averaged' capacity.

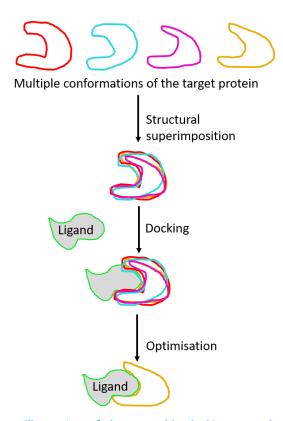


Figure 1. Cartoon illustration of the ensemble docking procedure. The ensemble consists of four conformations of the target protein coloured in red, cyan, magenta and orange.

¹Korb, O. *et al.* "Potential and Limitations of Ensemble Docking." *J. Chem. Inf. Model.* (2012). **52**, 1261-1274.

3

Learning Outcomes

In this workshop, you will perform a non-native docking of a ligand into an ensemble of four different protein conformers. After completing this workshop, you should be able to:

- Set up an ensemble docking simulation in GOLD.
- Visualize and analyze ensemble docking results.

This workshop will take approximately **20-25 minutes** to complete.

Note: The words in <u>Blue Italic</u> in the text are reported in the <u>Glossary</u> at the end of this handout.

Pre-required Skills

This example assumes you are already familiar with how to setup protein(s) and ligands for docking calculations in GOLD. If not, please refer to the following sections of the GOLD User Guide and CSDU module:

- Setting Up the Protein
- Essential Steps
- <u>Protein-ligand docking 101 running a simulation in GOLD</u>, covering the basics of protein-ligand docking with GOLD.

The basic visualisation options for Hermes are <u>at the end of this handout</u>.

Materials

For this workshop we will use the files that you can download from here.

Provided Input Files

Please download and unzip the input files <u>from this link</u>. In the folder you will find:

• One protein (4IVQ.mol2) which will be used to guide you through the key steps required to prepare a protein for ensemble docking.

- The remaining three protein files provided (1E2H.mol2, 1E2I.mol2, 1OF1.mol2) have been prepared following the same steps.
- The ligand file (1E2K_ligand.mol2) has been set up in accordance with the guidelines for the preparation of input files (Setting Up the Protein(s) and Setting Up Ligands) and will be used to define the shape of the binding site as well as for predicting its binding conformation.
- The active waters (i.e. those that you would like GOLD to consider during docking) are provided as separate files (water_1.mol2, water_2.mol2 and water_3.mol2).

The original PDB complexes (1e2h.pdb, 1e2i.pdb, 1e2k.pdb, 1of1.pdb and 4ivq.pdb) are also available, should you wish to prepare the proteins and ligand from scratch.

Case Study

Introduction

Thymidine kinase (TK) is the key enzyme in the pyrimidine salvage pathway catalysing the phosphorylation of thymidine to thymidine monophosphate (dTMP). In the cell, dTMP is then triphosphorylated and used as a DNA-building block. In contrast to the cellular enzyme, the viral thymidine kinase from *Herpes simplex* virus type 1 (TK_{HSV1}) exhibits a broad range of acceptance for nucleosides that makes it of interest for the enzyme-prodrug gene therapy of cancer. Thus, dividing cells that express TK_{HSV1} convert nontoxic nucleoside prodrug into their active form which inhibits cellular polymerases leading to cell death and consequently tumour ablation. The broad clinical use of guanosine prodrug analogues has led to the emergence of drug-resistance and to the urgent need of novel series of potent and conformationally different drugs.

Your protein:

TK_{HSV1} has been determined in both unligated form (apo) and in complex with different nucleoside prodrug ligands. The unit cell is composed of a homodimer TK_{HSV1}, where the two asymmetric subunits are named A and B (Figure 2).

Your ligand:

2'-exo-methanocarba-thymidine (MCT) is a potent antiviral compound characterised by high activity against HSV1 and HSV2. The co-crystallised complex TK_{HCV1} -MCT is available at 1.7 Å resolution (PDB code 1e2k). The thymidine ring of MCT is stacked between Met128 and Tyr172, and fixed by a complex hydrogen bonding network. Direct hydrogen bonds between one carbonyl and ammonia group of the nucleobase and the side chain of Gln125 and two water-mediated hydrogen bonds from one carbonyl of the nucleobase to the side chain of Arg176 are tightly fixing the nucleobase within the active site (Figure 3).

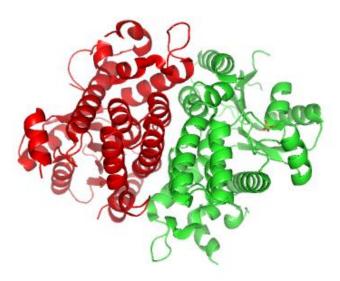


Figure 2. Crystallographic structure of TK_{HSV1} (apo). PDB code 1e2h. The two asymmetric subunits are coloured red and green.

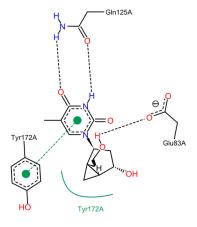


Figure 3. 2D interactions diagram of MCT in complex with TK_{HCV1}, PDB code: 1e2k.

Challenges:

The experimentally determined crystal structures of TK_{HSV1} in complex with several ligands reveal a common binding site for different classes of nucleoside. TK_{HSV1} shows an extremely plastic binding site able to adapt a wide variety of purine and pyrimidine analogues. The binding site includes some water molecules that mediate hydrogen bonds between the nucleobase and the protein contributing to stabilisation of the ligand binding.

Crystal structures of TK_{HSV1} show that Gln125 can adopt two different conformations (Figure 4):

- A conformation where the amido group of Gln125 forms a dimer of hydrogen bonds with the ligand (see 1e2k and 1of1);
- A conformation where only one of these hydrogen bonds is formed and a
 water molecule mediates the other hydrogen bond between the protein and
 the ligand (see 1e2i). Interestingly, the apo structure of TK_{HCV1}, 1e2h (not
 shown in the figure) also contains a water molecule placed in a similar
 orientation as above.

In this tutorial, we will perform a non-native ensemble docking of MCT into an ensemble of four TK_{HCV1} conformers.

To represent the two possible binding modes, three water molecules will be used during docking: two molecules conserved across all TK_{HCV1} models plus one molecule observed in 1e2i and in the apo structure (1e2h). The positions of these active waters will be explored to evaluate:

- How MCT binds to TK_{HCV1} and what is the preferred protein conformers of the four included in the ensemble.
- The displacement of the water molecules induced upon binding of MCT.

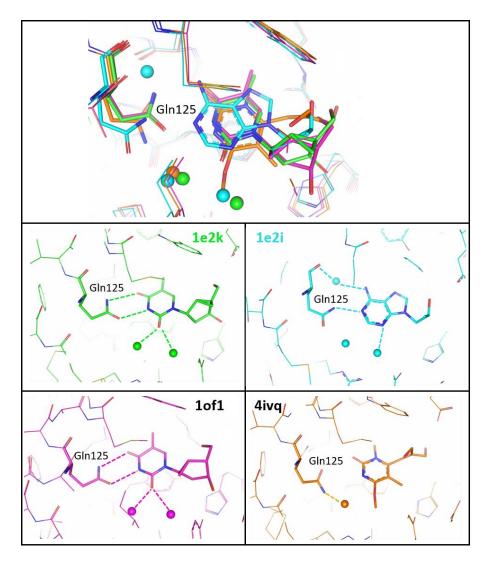
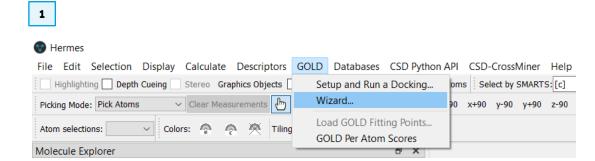
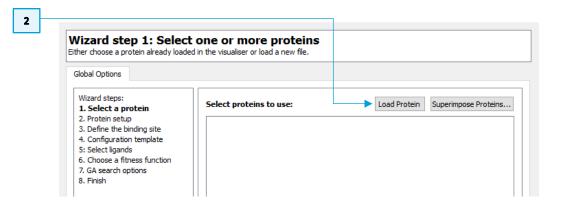


Figure 4: Superimposition of co-crystallised TK_{HCV1} -ligand complexes with the following PDB codes: 1e2k (green), 1e2i (cyan), 1of1 (magenta) and 4ivq (orange). Individual TK_{HCV1} -ligand complexes are also shown to highlight the hydrogen bond network involving Gln125, the nucleobase and water molecules. Water molecules in the binding site are represented as spheres and are coloured accordingly to the colour code used for the respective protein and ligand.

6

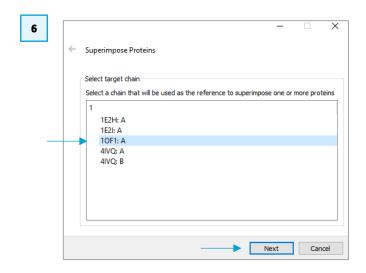

3

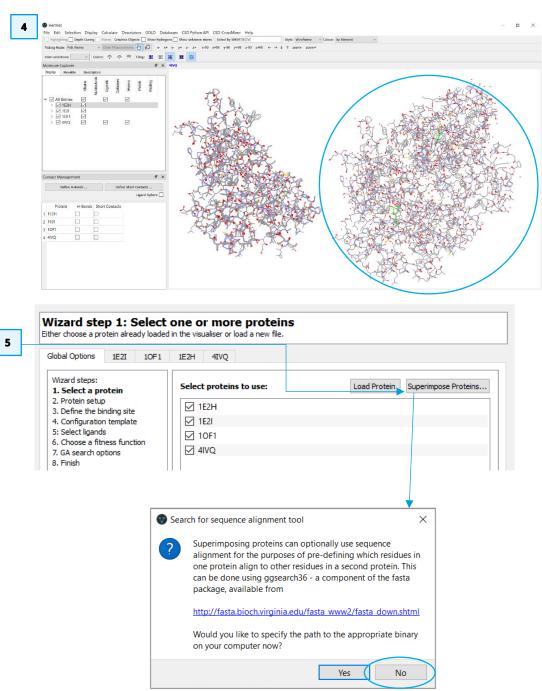

Superimposing Protein Structures

An essential step of protein set-up for ensemble docking is that the proteins are superimposed. This is because there can only be a single binding site definition applicable across the whole ensemble. It is necessary to specify the approximate centre and extent of the protein binding site.

Brief details follow; complete details are provided in the Hermes User Guide. A wizard is provided to facilitate protein superimposition. Proteins can be overlaid by matching residues based on label, matching residues based on sequence number or by matching residues based on sequence alignment. **Optionally**, a component of FASTA (called <code>ggsearch2</code>) can be used for the sequence alignment of the proteins to be superimposed. The package can be downloaded from http://fasta.bioch.virginia.edu/fasta_www2/fasta_down.shtml. In both cases above the wizard guides you through the superimposition process.

- 1. To access the wizard, launch GOLD and click **Wizard** or launch Hermes click on **GOLD** from the top-menu bar and select **Wizard...**.
- Click on Load Protein in GOLD Setup window and load the four protein files provided in this tutorial (1E2H.mol2, 1E2I.mol2, 1OF1.mol2 and 4IVQ.mol2), one at a time. Please note that whilst there is a maximum limit of 20 proteins when using ensemble docking, we do not recommend using more than 10 proteins.
- 3. Note that as each protein is separately added, a tab corresponding to that protein appears to the right of the *Global Options* tab and it is labelled with the name taken from the protein file *e.g.* 1E2H.


Wizard step 1: Select one or more proteins Either choose a protein already loaded in the visualiser or load a new file. Global Options 1E2I 10F1 1E2H 4IVQ Wizard steps: Select proteins to use: Load Protein Superimpose Proteins... 1. Select a protein 2. Protein setup ✓ 1E2H 3. Define the binding site √ 1E2I 4. Configuration template 5: Select ligands 10F1 6. Choose a fitness function ✓ 4IVQ 7. GA search options 8. Finish


4. In Hermes 3D view, you will notice that three of the proteins (1E2H, 1E2I and 1OF1) are superimposed and have had hydrogen atoms added. The fourth protein, 4IVQ, has not been prepared: it is in a different frame of reference with respect to the other proteins, it has no hydrogen atoms, and still contains chain B and ligands.

5. To superimpose 4IVQ on top of one of the other three proteins, click **Superimpose Proteins** and then follow the onscreen instructions.

A wizard window will ask you if you want to use a component of the FASTA package or, if binaries can't be found, the default is to use Needleman-Wunsch algorithm. If you do not have FASTA installed, click **No** to use the default. Both FASTA and the Needleman-Wunsch algorithm do the same thing, i.e. they generate global sequence alignments which give a pair-wise matching of one residue to another, and this can then be used for overlay.

Click to select 10F1: A to use as the reference chain and click on **Next** to proceed to the *Superimpose Proteins* dialogue.

- 7. Click to select 4IVQ: A, then click the right-arrow to choose to overlay this chain only. Then click Next to proceed. In the next pop-up window leave the Use whole protein activated and the default Superimposition Weighting value and click Next.
- 8. Click **Transform Structures** in *Superimpose Proteins* window to proceed to the overlay. When completed click on **Finish**.
- 9. Return to the *GOLD Setup* window. Click **Next** to proceed to *Protein setup* step to additionally edit the protein structure(s) if required.

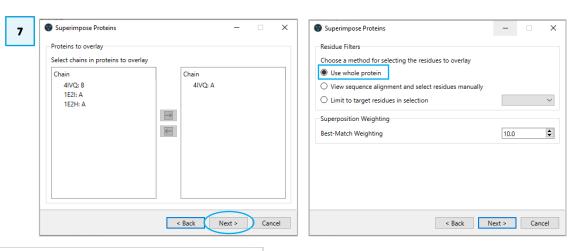
Wizard step 2: Protein setup

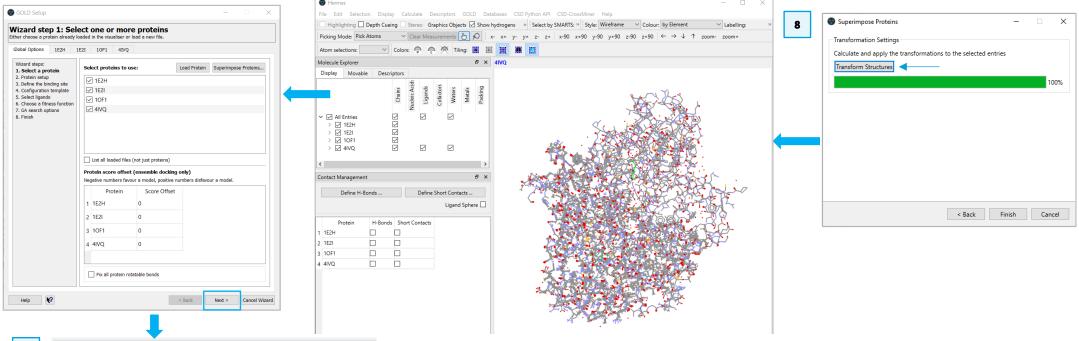
Wizard steps:

1. Select a protein

Protein setup
 Define the binding site

Configuration template
 Select ligands
 Choose a fitness function
 GA search options
 Finish

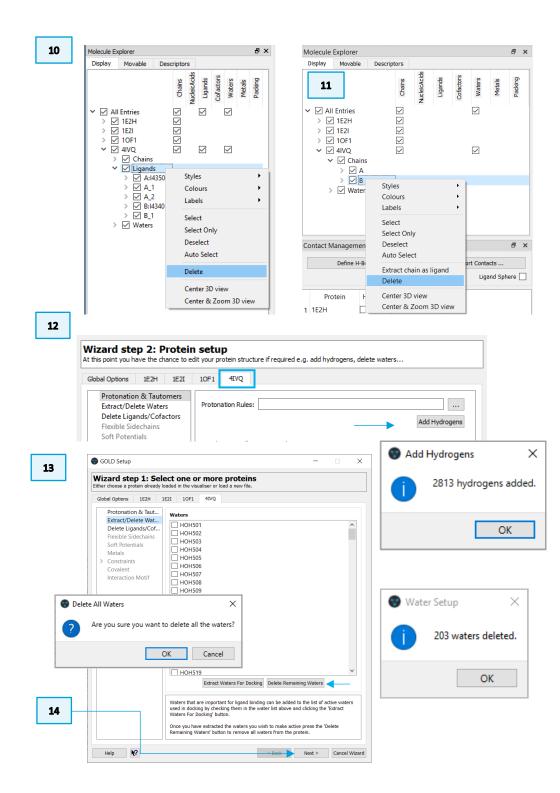

Global Options 1E2H 1E2I 1OF1 4IVO


At this point you have the chance to edit your protein structure if required e.g. add hydrogens, delete waters...

1. Add Hydrogens

To edit the protein(s) use the options available on the protein tabs to:

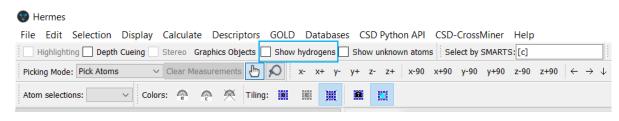
2. Configure active waters and delete unnecessary waters

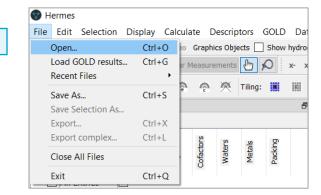


Protein Setup

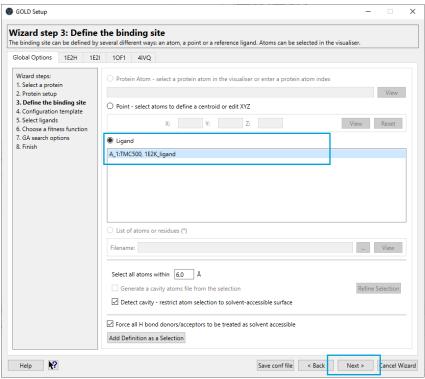
In the remainder of this section, we will describe the steps required to prepare 4IVQ for docking:

- 10. In the Molecule Explorer (off to the left-hand side of the Hermes interface) click on the ">" adjacent to 4IVQ and underneath All Entries. Right-click on Ligands and select Delete from the pull-down menu.
- 11. Similarly, to delete Chain B, click on ">" adjacent to 4IVQ and then on ">" adjacent *Chains*. The two different chains (A and B) are shown; right-click on B and select **Delete** from the pull-down menu.
- 12. Return to the *GOLD Setup* window and click on the *4IVQ* adjacent to the *Global Options* tab. From within the *4IVQ* tab, add hydrogen atoms to the protein by selecting **Add Hydrogens** from the first *Protonation & Tautomers* option in the Wizard. 2813 hydrogens will be added, click OK.
- 13. Still in *4IVQ* tab, move to the next option by clicking on **Extract/Delete Waters**. From within this dialogue, it is possible to specify water molecules that mediate protein-ligand interactions (active water), and to delete those that are not required. Since we don't want to extract any waters from this structure, click **Delete Remaining Waters**. When prompted *Are you sure you want to delete all waters?* click **OK.** You will be informed that 203water molecules have been deleted.
- 14. Click **Next** to proceed to *Define the binding site* tab of *GOLD Setup* window.



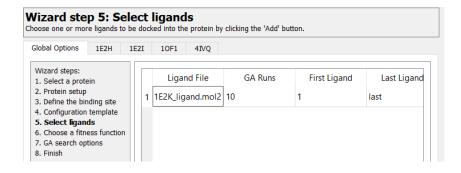

Exploring the Ligand for Ensemble Docking

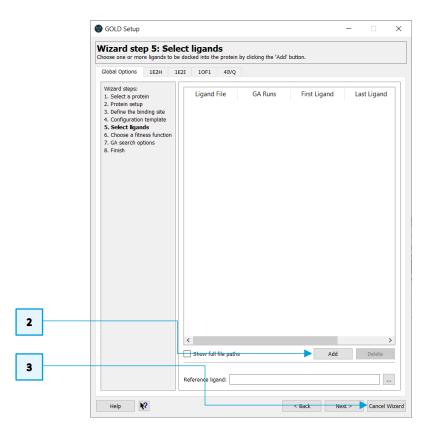
Defining the Binding Site


Since the binding site definition for an ensemble must be a position suitable for all proteins, it is not possible to define the binding site from an atom or a list of atoms or residues. It is only possible to define the binding site from a point in space or from a ligand.

- Load the reference ligand file 1E2K_ligand.mol2 in Hermes by clicking on the main menu option File and then Open from the resultant pull-down menu. This loads the ligand in the 3D view and makes the ligand available for binding site definition.
- 2. While on the *Define the binding site* step, in the GOLD Wizard, click to activate the *Ligand* radio button. Select *A_1:TCM500*, *1E2K_ligand* to determine the binding site. Leave the default all atoms within 6 Å of the ligand for the binding site definition. It can help here to switch off the display H-atoms using the **Show hydrogens** tick box in the top-level menu of Hermes. Carbon atoms outside of the binding site will turn purple. Click **Next** to proceed.
- 3. At this point you are given the option to load a configuration file template. These templates can be used to load recommended settings for a number of different types of docking protocols (see <u>GOLD User Guide</u>). In this example, we will specify all docking settings manually. Click **Next** to proceed to the *Select ligands* step in GOLD wizard.

2

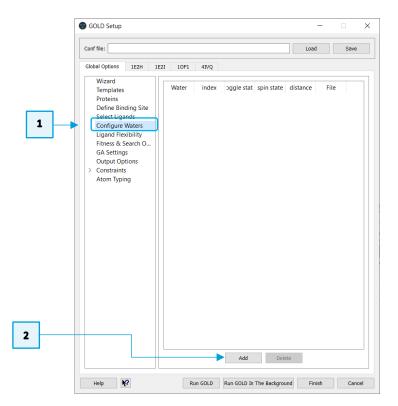



Selecting Ligand(s) for Docking

To proceed with the GOLD setup, we must specify the ligand that we want to dock in the ensemble of TK proteins.

- The ligand is provided in the tutorial folder (1E2K_ligand.mol2). As with the
 protein file, all hydrogen atoms must be present in the ligand file. We have
 already added the hydrogen atoms to the ligand.
- Specify the ligand by clicking the Add button at the bottom of the GOLD Setup window. Navigate to the folder to which you copied the tutorial files, select 1E2K_ligand.mol2 then click Open. The 1E2K_ligand.mol2 is now listed under Ligand File.
- 3. *GOLD Wizard* provides the key steps for docking; however, more advanced options (*i.e. Configure Waters*) are available outside the main Wizard.

To access these advanced options, click Cancel Wizard.


Setting Water in the Binding Site (Active Waters)

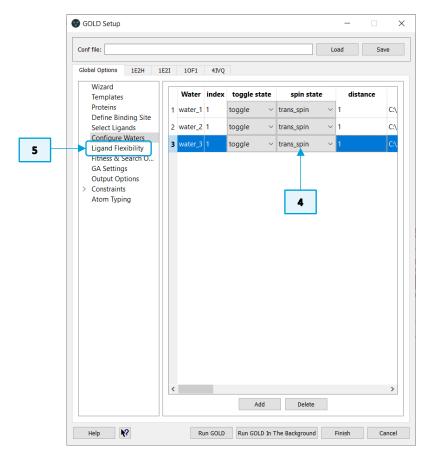
Before proceeding with the docking setup, we must define the active waters that we want to be considered during the ensemble docking.

Three active water molecules have been detected: two waters that coordinate H-bonds between the thymidine ring and Arg176 of TK_{HSV1}, and a third water molecule that coordinates the hydrogen bonds between the nucleobase of the ligand and the side chain of Gln125. This water molecule can compete with the thymidine ring of MCT to form direct hydrogen bonds with Gln125.

The active waters must be provided in separate files, one water molecule per file. You can find these files in the tutorial folder.

- Click on Configure Waters from the list of available options in GOLD Setup window.
- The dialogue is empty, so we need to specify our water molecules by reading in the water files. To do this click on the Add button, select the three water files, water 1.mol2, water 2.mol2, water 3.mol2 then click Open.
- 3. The water molecules will be listed in the Configure Waters dialogue. By default, each water molecule in Configure Waters list will be retained in the binding site during docking and will be allowed to spin and toggle to optimise the position of the molecule and the orientation of the hydrogens. These settings can be customised for specific water molecules within the Waters dialogue in the GOLD Setup window.
 - *Toggle* state leaves GOLD to decide whether the water should be present or absent (bound or displaced by the ligand) during the docking.
 - On sets the water to be always present in the binding site and allows the hydrogen positions to vary during docking to maximise the hydrogen bonding score both from interactions with the protein and the ligand.

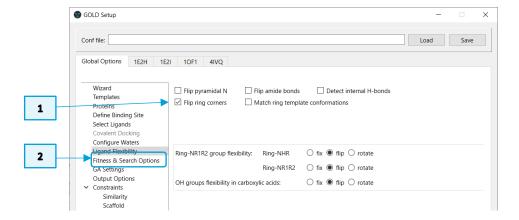
• The *Off* water state option allows a water to be removed from consideration during docking.


Leave the **toggle state** as *toggle* for this workshop. This means GOLD will decide whether the waters should be present or absent.

- 4. The orientation of the waters can be also changed.
 - Activating the *spin* option makes GOLD automatically optimise the orientation of the hydrogen atoms.
 - If you activate the *trans_spin* option and input a translation value into the distance dialogue, this will make GOLD spin and translate the water molecule to optimise the orientation of the hydrogen atoms as well as the water molecule's position within a defined radius. Note that the distance value must be between 0 and 2 Å.
 - Activating the *fix* option makes GOLD using the orientation specified in the input file.

Set the **spin state** to *trans_spin* from the dropdown menu. Set the **distance** to 1 Å, by double-clicking in the box and typing "1". This means that the waters are allowed to translate up to 1 Å.

After docking, a summary of which waters were retained or displaced and their contribution to the fitness score can be found in the *Analysis of active water placements* section of the gold_1E2K_ligand_m1.log file.


5. Click on *Ligand Flexibility* to continue with the GOLD Setup.

Setting Ligand Flexibility

 Activate the flip ring corners tick-box to allow GOLD to perform a limited conformational search of cyclic systems by allowing free corners of the rings in the ligand to flip above and below the plane of their neighbouring atoms. We will leave the remaining default options as is, but you can look through them to understand what they are.

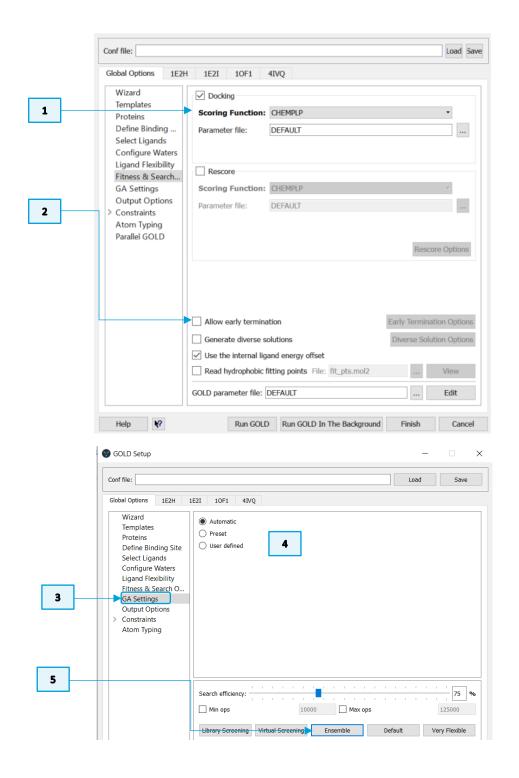
2. Click on Fitness & Search Options to continue with the GOLD Setup.

Setting Docking Parameters

Selecting a Fitness Function

During the docking run the solutions found by GOLD are scored according to
a fitness function. Ensure that the default CHEMPLP <u>scoring function</u> is
selected in Fitness & Search Options dialogue.

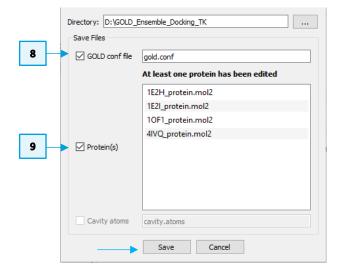
- 2. By default, **Allow early termination** check box is switched on. Switch it off by unticking the box next to *Allow early termination*. This will ensure that as many solutions as possible are explored.
- 3. Click on GA Settings dialogue.

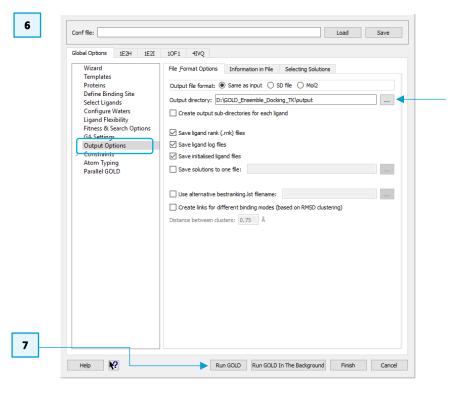

Specifying GA Settings

GOLD optimises the fitness score using genetic algorithm (GA). A number of parameters control the precise operation of the genetic algorithm. These settings are encapsulated into three speeds:

- Slow (most accurate): this equates to 100,000 GA operations
- Medium: 50,000 operations
- Fast (least accurate): 10,000 operations

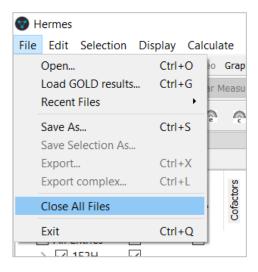
There is a trade-off between speed and reliability. The fewer options, the faster the docking, but the search space will be less explored.

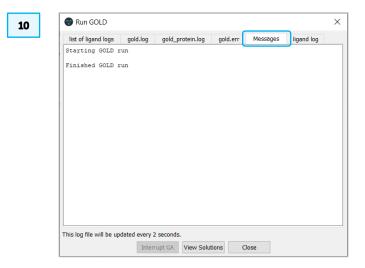

- 4. Enable automatic <u>GA setting</u> by clicking the **Automatic** radio bottom and ensure the <u>Search efficiency</u> is set to 100%. This will make GOLD automatically calculate an optimal number of operations for a given ligand, thereby making the most efficient use of the search time.
- Click on the Ensemble button. This will set the search efficiency at 75% and it is recommended for ensemble docking.

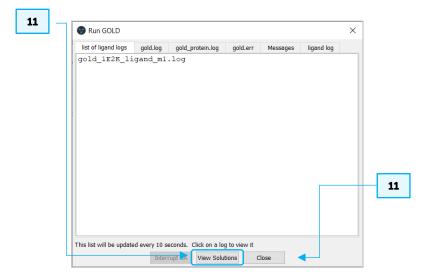


Run the Ensemble Docking

6. Before starting the run, select *Output Options*. Click on the ... button next to *Output directory* and specify a directory to which you have permission to write; this is where the GOLD output files will be written.


- 7. We have now finished setting up our docking. Click the **Run GOLD** button at the bottom of the GOLD interface. You will be presented with a *Finish GOLD Configuration* window containing *Save Files* options.
- 8. Ensure the GOLD conf file tick-box is activated and rename the .conf file as gold_ensemble_TK.conf.
- 9. Ensure that Protein(s) tick-box is activated. We want to save the edited 4IVQ structure. Note that all proteins will be saved, including the not edited ones. Click **Save** to start the docking.





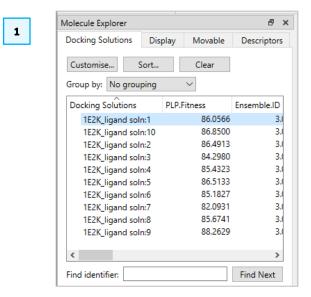
10. As the job progresses output will be displayed in several tabs in the *Run GOLD* window. Click on the Messages tab.

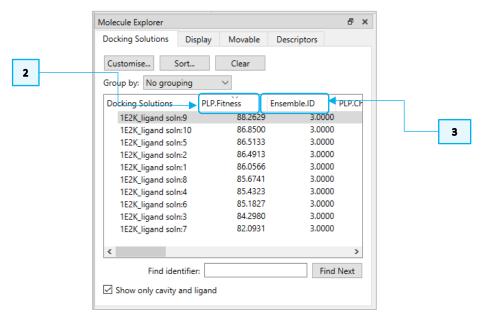
11. Once the job is complete, start by clearing all initial files in Hermes by going to the Hermes menu **File** then **Close All Files**. Then, return to the *Run GOLD* window and load the docking results into Hermes by clicking on the **View Solutions** button. We have finished with the *Run GOLD* window now, so close the window by clicking on the **Close** button. In the *GOLD Setup* window, click on **Cancel** button to close this window as it is no longer needed.

Analysing Docking Results

Visualising Docking Results

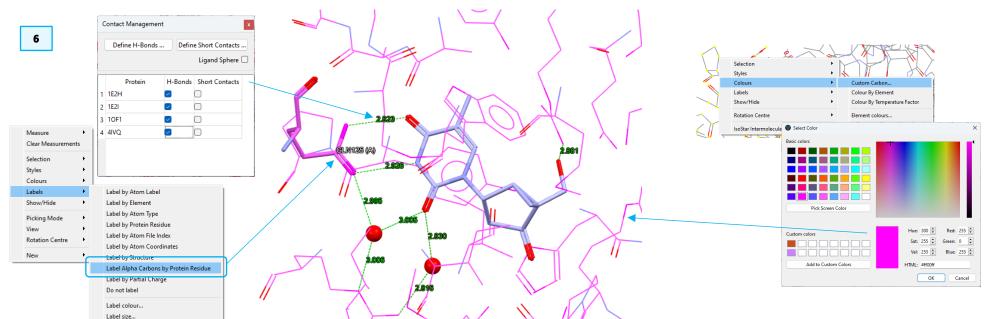
1. Return to the Hermes 3D view and look at the *Docking Solutions* tab in *Molecule Explorer*. Use the Up and Down arrows on your keyboard to change between docking solutions. Let us think about what results we can expect:

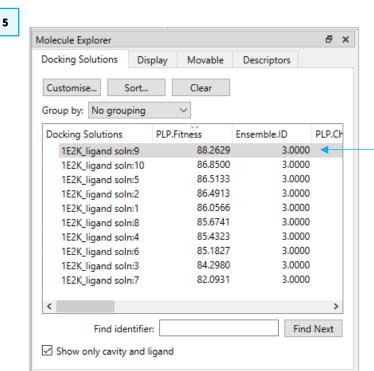

We chose to dock one ligand into four proteins. Starting from a superimposed set of protein structures, GOLD evolves a separate population of individuals (representing ligand conformations) for each protein structure that is part of the ensemble. The best ligand conformation found in any of the ensemble structures is returned. For example, if for a given GA run a ligand gets the scores 10 in protein 1, 20 in protein 2 and 15 in protein 3, protein 2 will be selected.


The docking solutions are given in their docked order with their corresponding
fitness score listed under the column headed *PLP.Fitness*. If required, the
solutions can be ordered by clicking on this *PLP.Fitness* header to determine
which is the highest scoring.

<u>Please note:</u> Due to the non-deterministic nature of GOLD your results may vary from those described in this workshop.

3. We have obtained 10 docking solutions as this is the default number of how many times our ligand was docked. The protein that the solution corresponds to may be one of four, identifiable by the ensemble index number (1-4).


The initialised protein is given a filename of the type $gold_protein_<ensemble_index>.mol2$, where the numbers correspond to the order in which the proteins are loaded. This index number is given in the docking solutions pane in Hermes as the column headed *Ensemble.ID*, next to the fitness score so you can see to which protein each solution corresponds.



4. GOLD gives best docking results for protein 3 but you may have additional proteins included in your results.

- 5. The fact that protein 1OF1 (shown here in magenta) gives the best docking results is not surprising considering that its co-crystallised ligand is the most structurally like MCT and so is its binding mode. Tip: to change the colour of the protein, shift + left click on the protein to select it, then right click, choose *Custom Carbon...* and select your preferred colour.
- 6. Make sure the solution with the best fitness score is selected. Tick the **H-bonds** box next to each protein in the *Contact Management* window to see which protein displays H-Bonds. (Tip: If the *Contact Management* window is not visible, click on *Display > Toolbars > Contacts...*) You should now see the 4 proteins listed with H-Bonds and Short Contacts. To see which residues are involved in H-bonding, right click in the visualiser, select *Labels > Label Alpha Carbons by Protein residue*. By inspecting the binding mode, we can confirm that MCT forms two hydrogen bonds with the sidechain of Gln125 which in the 10F1 model displaced one of the three water molecules

Conclusions

 The crystallographically observed conformation of the 1E2K_ligand can be compared to the poses found when docking this ligand to the ensemble of TKHSV1.

- The best ranking pose obtained in protein model 3 (i.e. 10F1) reproduced the crystallographically observed conformation of the ligand.
- By allowing water molecules to rotate, translate and turn on and off GOLD sampled different protein models, identifying the correct ligand binding mode in the different protein conformations.

After this workshop, you should be able to:

- Set up ensemble docking in GOLD.
- Visualise and analyse docking results with Hermes.

Next Steps

After this workshop, you can continue learning about GOLD with more exercises available in the self-guided workshops available in the CSD-Discovery workshops area on our website.

https://www.ccdc.cam.ac.uk/community/training-and-learning/workshop-materials/csd-discovery-workshops/.

You can also learn more about protein flexibility in docking in this paper: https://doi.org/10.1021/acs.jcim.5b00344

Feedback

We hope this workshop improved your understanding of GOLD and you found it useful for your work. As we aim to continuously improve our training materials, we would love to get your feedback. Click on this link to a survey, it will take less than 5 minutes to complete. The feedback is anonymous. You will be asked to insert the workshop code, which for this self-guided workshop is GLD-002. Thank you!

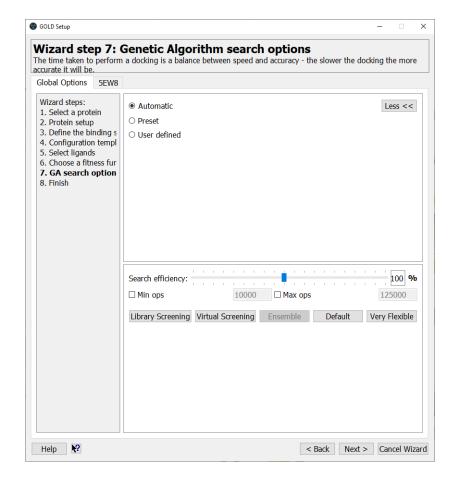
Glossary

Binding Site

A specific region (or atom) in a molecular entity that is capable of entering into a stabilizing interaction with another molecular entity. An example of such an interaction is that of an active site in an enzyme with its substrate. Typical forms of interaction are by hydrogen bonding, coordination and ion pair formation. Two binding sites in different molecular entities are said to be complementary if their interaction is stabilizing. *Source*: PAC, 1994, 66, 1077. (Glossary of terms used in physical organic chemistry (IUPAC Recommendations 1994)) on page 1089.

Docking

Docking studies are computational techniques for the exploration of the possible binding modes of a substrate to a given receptor, enzyme or other binding site. *Source*: PAC, 1997, 69, 1137. (Glossary of terms used in computational drug design (IUPAC Recommendations 1997)) on page 1142.


Ensemble Docking

Ensemble docking aims to address the issue of protein flexibility by adding multiple protein structures into a single GA run. The ultimate aim is to obtain higher enrichments in virtual screening experiments.

GA setting

A genetic algorithm is an optimization algorithm based on the mechanisms of Darwinian evolution which uses random mutation, crossover and selection procedures to breed better models or solutions from an originally random starting population or sample. *Source*: PAC, 1997, 69, 1137. (Glossary of terms used in computational drug design (IUPAC Recommendations 1997)) on page 1144.

In GOLD, number of genetic operations performed (cros sover, migration, mutation) is the key parameter in determining how long a GOLD run will take (i.e. this parameter controls the coverage of the search space). GOLD can automatically calculate an optimal number of operations for a given ligand, thereby making the most efficient use of search time, e.g. small ligands containing

only one or two rotatable bonds will generally require fewer genetic operations than larger, highly flexible ligands. The criteria used by GOLD to determine the optimal GA parameter settings for a given ligand include:

- the number of rotatable bonds in the ligand,
- ligand flexibility, i.e. number of flexible ring corners, flippable nitrogens, etc. (see Ligand Flexibility),
- the volume of the protein binding site, and
- the number of water molecules considered during docking (see Water Molecules).

The exact number of GA operations contributed, e.g. for each rotatable bond in the ligand, are defined in the gold.params file (see Altering GOLD Parameters: the gold.params File). For further information please refer the GOLD user manual.

GOLD

GOLD (Genetic Optimisation for Ligand Docking) is a genetic algorithm for docking flexible ligands into protein binding sites. GOLD has been extensively tested and has shown excellent performance for pose prediction and good results for virtual screening.

Ligand

In this context, these are the molecules under investigation. These could be organic, inorganic and macromolecules.

Scoring function

In the fields of computational chemistry and molecular modelling, scoring functions are mathematical functions used to approximately predict the binding affinity between two molecules after they have been docked. Most commonly one of the molecules is a small organic compound such as a drug and the second is the drug's biological target such as a protein receptor.

Basics of Hermes Visualisation

Hermes is the CCDC's visualization software to study protein-ligands interaction, and it is the interface for protein docking with GOLD.

In the following we will see some of the basics of navigation and visualization in Hermes that you will find helpful to support your analysis.

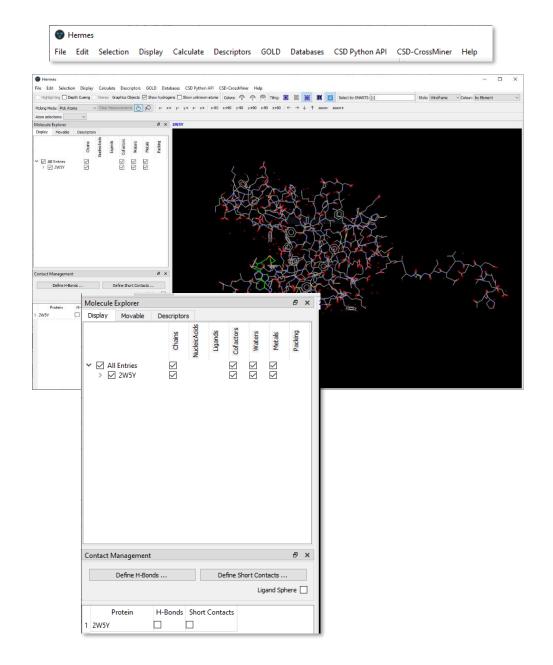
In the **Hermes interface** we find:

- At the top: list of menus from which we can access visualization and analysis options, and other CSD-Discovery components.
- On the left-hand side: the Molecule Explorer, where the proteins, ligands, water molecules, and other molecules present in the structures are listed in the *Display* tab. You can expand each entry to see the components, and tick or untick the corresponding boxes to display / not display them. The solutions from a GOLD run will also be displayed in the Molecule Explorer.
- On the left-hand side, below the Molecule Explorer: the Contact
 Management box, which allows to display H-bonds and short contacts
 for selected molecules by ticking the corresponding box.

Using the mouse to enhance visualization:

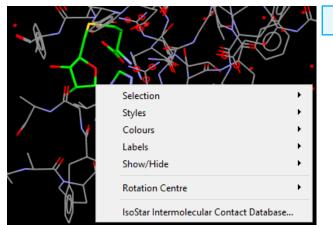
• Left mouse button and move – rotate molecules

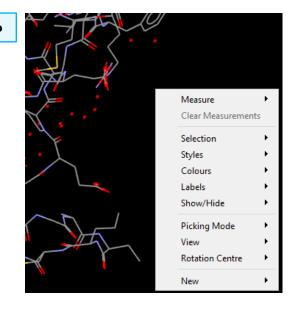
• Middle Mouse wheel – move molecules up and down

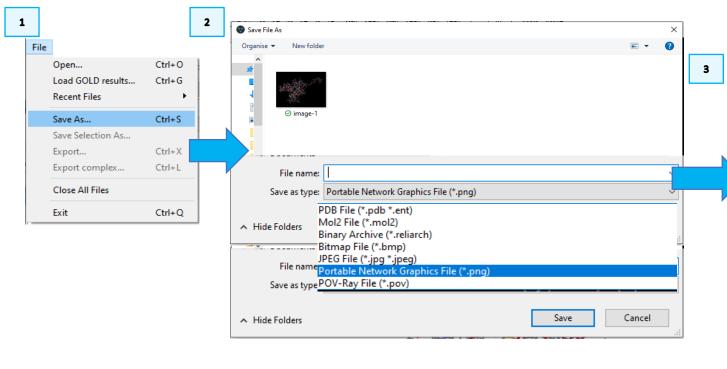

• Right mouse button and move up and down – zoom in and out of molecules

 Shift + Left mouse button and move - rotate in the plane molecules

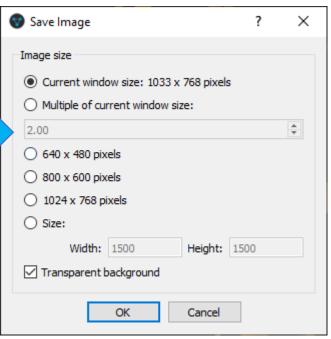
Ctrl + Left mouse button and move - translate molecules


Right click:

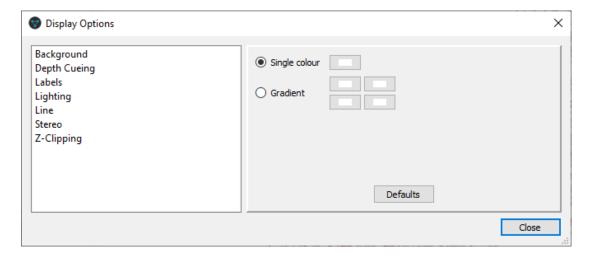

- a) On a feature
- b) Away from a feature


Creating high-resolution images

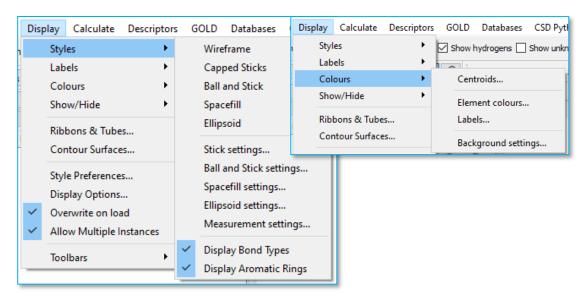
- 1. Go to the top menus and click on **File**, then **Save As**. Alternatively you can use the keyboard and do **Ctrl + S**.
- 2. In the *Save File As* window, select destination folder, file type and choose a name. Then click **Save**.

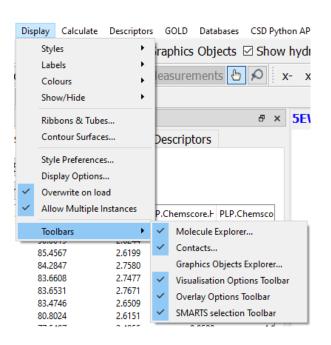

3. This will bring up the *Save Image* menu. Here you can select the resolution and tick whether you want a transparent background. Click **Ok**.

а



You can access visualization options from the **Display** menu.


• From **Display > Styles**, you can pick the representation style of atoms and bonds and change settings. **Note**: you can also access this feature from the dropdown menu at the top right of the 3D visualizer window.



- From **Display > Colours**, you can edit the colour for elements and object. **Note:** you can change the colouring style for the structure from the dropdown menu at the top right of the 3D visualizer window.
- Clicking on Display > Display Options brings up the Display Options menu, where you can edit settings for the 3D visualizer.

• If any of the toolbars at the top of the Hermes interface is not displayed and you wish to have it shown, or vice versa, you can do so from **Display > Toolbars**, where you can ensure to tick the ones you wish to have on.

