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THE CAMBRIDGE STRUCTURAL DATABASE (CSD)

Successtul modern drug discovery research makes extensive use of structural data — from target protfeins, candidate drug molecules, and complexes of the two. The
value of protein-ligand structural information is well accepted, however, knowledge of molecular conformations and intferactions derived from small molecule structures
alone can have a significant impact in drug discovery. This year commemorates a milestone for structural chemistry as the CSD has reached the addition of its millionth
stfructure to its extensive repository of fully curated organic and metal-organic structures.
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FROM DATA TO KNOWLEDGE

Here are two examples showing the value that
can be obtained from the fully curated database
and consider the intelligent software required to
extract powerful Insights that can inform the
design, development and identification of new
and better pharmaceutical products.

Which structural motifs bind similar protein
binding sites?

Which ligand motifs have similar protein
Inferaction patternse

Which ligand modifications and scaffold hops
are tolerated in a protein binding site?

CSD-CrossMiner! provides the ability to search structural databases in terms of Molecular Shape
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Aim: replace the pyrimidone ring to find new potent Aim: find isosteres of the 1,6-naphthyridine ring to I -
tyrosine kinase inhibitors. obtain more potent and selective analogs while 3 3
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Results: we found hits from the CSD with a different o
Hydrophobe

central ring, e.g. IDUQOO with a pyrane ring. In
addition, we found solutions where the cenftral ring is

replaced by an urea moiety able to form an
intframolecular H-bond. Results: we found hits from the CSD with an isothiazole

as an isostere of the 1,6-naphthyridine ring.
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