
Advanced search and analysis using the

CSD Python API (PYAPI-002)

2020.3 CSD Release

CSD Python API version 3.0.4

CSD Python API scripts can be run from the command-line or from within Mercury to achieve a wide
range of analyses, research applications and generation of automated reports.

PYAPI-002

2

Table of Contents
Introduction .. 3

Objectives ... 3

Pre-required skills ... 3

Materials ... 3

Activating the command line .. 4

Example 1: Searching the CSD for specific interactions .. 5

Aim .. 5

Instructions ... 5

Conclusions ... 8

Example 2: Filtering the CSD to find organic hydrates ... 10

Aim .. 10

Instructions ... 10

Conclusions ... 12

Example 3: Tackling a scientific challenge using Python scripting .. 13

Aim .. 14

Approach ... 14

Scientific Challenges.. 14

Conclusions ... 14

Workshop Conclusions .. 15

Next Steps ... 15

Feedback ... 15

Glossary ... 15

PYAPI-002

3

Introduction
The CSD Python API provides access to the full breadth of functionality that is available within the

various user interfaces (including Mercury, ConQuest, Mogul, IsoStar and WebCSD) as well as features

that have never been exposed within an interface. Through Python scripting it is possible to build

highly tailored custom applications to help you answer detailed research questions, or to automate

frequently performed analysis steps.

This workshop will cover advanced searching of specific types of interactions in the CSD. The

applications illustrated through these case studies are just as easily applied to your own experimental

structures as they are to the examples shown here using entries in the Cambridge Structural Database

(CSD).

Before beginning this workshop, ensure that you have a registered copy of CSD-Core or above installed
on your computer. Please contact your site administrator or workshop host for further information.

Objectives
In this workshop, you will learn how to:

• Search for specific interactions in the CSD.

• Save your search results.

• Visualize outputs in a plot.

• Create search filters.

This workshop will take approximately 25 minutes to complete guided Examples 1 and 2. Example 3 is

an open challenge and can be completed at your own pace.

Note: The Glossary at the end of this handout contains useful terminology.

Pre-required skills

The following exercises assume that you have a working knowledge of Python. We recommend

working through the Introduction to the CSD Python API workshop (PYAPI-001) that can be found here

before starting this workshop.

Materials

A text editor is required for scripting during this workshop. If you have a preferred text editor, we

recommend sticking with that. If you do not have a preferred editor, we would recommend Notepad++

for Windows (https://notepad-plus-plus.org/) and BBEdit for macOS (available in the App Store). The

basic Notepad functionalities in Windows would also be enough. For more in-depth Python editing or

for interactive work, try looking at PyCharm (https://www.jetbrains.com/pycharm/) or Jupyter

(https://jupyter.org/). Visual Studio is available for all platforms and would be a suitable editor

(https://visualstudio.microsoft.com/downloads/).

https://www.ccdc.cam.ac.uk/Community/educationalresources/workshop-materials/csd-core-workshops/
https://notepad-plus-plus.org/
https://www.jetbrains.com/pycharm/
https://jupyter.org/
https://visualstudio.microsoft.com/downloads/

PYAPI-002

4

Activating the command line
1. For this exercise we will be writing the script in a Python file that we can then run from a command

prompt later. Start by creating a folder where you will save your Python files in a place where you

have read and write access, for example C:\training\ for Windows, or something equivalent on

macOS or Linux. We will continue to use our C:\training\ folder (or equivalent), through the

tutorial.

2. Open the command prompt from this folder. In Windows you can type ‘cmd’ in the File Explorer

tab and press ‘Enter’. In Linux you can right click on the folder and select Open in Terminal. In

macOS, right click on the folder, select Services then click New Terminal at Folder.

The command prompt window should now appear.

3. To run your Python scripts from the command prompt, you will first need to activate your

environment. The activation method will vary depending on the platform:

• Windows: Open a command prompt window and type (including the " marks):
"C:\Program Files\CCDC\Python_API_2021\miniconda\Scripts\activate"

• MacOS/Linux: Open a terminal window and change directory to the CSD Python API bin folder:
cd /Applications/CCDC/Python_API_2021/miniconda/bin

Then activate the environment with:
source activate

If the activation is successful, (base) will appear at the beginning of your command prompt:

PYAPI-002

5

Example 1: Searching the CSD for specific interactions.

Aim

This example will focus on using the CSD Python API to carry out a substructure search across the CSD.

We will learn how to define substructures, how to apply search settings and constraints, and then how

to visualise the data graphically.

Example system

In this example we will investigate the interaction geometry of an aromatic iodine and the nitrogen

atom of a pyridine ring. We wish to know if the C-I···N angle tends towards 180° as the I···N distance

becomes shorter. Figure 1 illustrates the substructure that we will search the CSD for, with the

relevant geometric parameters indicated.

The halogen bonding substructure with defined geometric parameters

Instructions

1. Open your preferred text editor and create a new Python file called interaction_search.py that we

will run from a command prompt later. The following steps show the code that you should write

in your Python file, along with explanations of what the code does.

2. We will start by importing the necessary modules for carrying out the substructure search and

visualising the data:

import matplotlib

matplotlib.use('TkAgg')

import matplotlib.pyplot as plt

import ccdc.search

In order to perform a substructure search, we must import the ccdc.search module. Additionally,

the matplotlib.pyplot module will allow us to generate plots to visualise our results. We declare

matplotlib.pyplot as plt to save us a lot of typing later on!

PYAPI-002

6

3. There are several ways that we can define our substructure, but for this example we will make use

of SMARTS strings – a way of describing chemical structure using letters, numbers and symbols:

ar_I_sub = ccdc.search.SMARTSSubstructure('Ic1ccccc1')

pyridine_sub = ccdc.search.SMARTSSubstructure('n1ccccc1')

Here, ar_I_sub specifies the aromatic iodine substructure, and pyridine_sub specifies the

pyridine substructure, with respective SMARTS strings of Ic1ccccc1 and n1ccccc1. Note that

our atoms of interest, I and N, are both at index 0 of the SMARTS strings we have defined. If you

are unfamiliar with SMARTS strings, you can visualise them and learn more about the format with

SMARTSviewer (http://smartsview.zbh.uni-hamburg.de/).

4. We then create our substructure search, which we will call halogen_bond_search:

halogen_bond_search = ccdc.search.SubstructureSearch()

and add the substructures that we created in the previous step:

ar_I_sub_id = halogen_bond_search.add_substructure(ar_I_sub)

pyridine_sub_id = halogen_bond_search.add_substructure(pyridine_sub)

We have added our substructures in this way, giving them identifiers, so we can add our geometric

constraints later.

5. We can also specify various criteria for searches by changing the search settings. We can do this

in the following way:

halogen_bond_search.settings.only_organic = True

halogen_bond_search.settings.no_disorder = 'all'

halogen_bond_search.settings.max_r_factor = 5.0

This will change certain settings of our halogen_bond_search. Here, we have specified that we

only wish to search the CSD for organic structures with no disordered atomic positions and a

crystallographic R-factor of 5.0 or less.

6. We will now apply geometric constraints to our substructure search to limit our search to

structures which display characteristic halogen bonding interactions. We will first specify our

distance constraint (DIST1 in Figure 1):

halogen_bond_search.add_distance_constraint('DIST1',

 ar_I_sub_id, 0,

 pyridine_sub_id, 0,

 (0.0, 3.4),

 'Intermolecular')

Here we have defined an intermolecular distance, DIST1, between the atom at index 0 of our

aromatic iodine substructure (the iodine atom) and the atom at index 0 of our pyridine

substructure (the nitrogen atom). Additionally, we have specified that this distance must be

between 0.0 and 3.4 Å.

http://smartsview.zbh.uni-hamburg.de/

PYAPI-002

7

Similarly, we can specify our angle constraint (ANG1 in Figure 1):

halogen_bond_search.add_angle_constraint('ANG1',

 ar_I_sub_id, 1,

 ar_I_sub_id, 0,

 pyridine_sub_id, 0,

 (120.0, 180.0))

Here we have defined an intermolecular C-I···N angle and specified that it must lie between 120.0°

and 180.0°.

7. We are now ready to perform our substructure search. To avoid bias by picking multiple

observations from the same structure we will limit the number of hits per structure to 1:

halogen_bond_hits = halogen_bond_search.search(max_hits_per_structure=1)

This will perform the substructure search, which should take less than a minute. The results from

the search will be stored in the variable halogen_bond_hits.

8. We can now extract our data from halogen_bond_hits into two separate lists, one for

distances and one for angles:

dist1 = []

ang1 = []

for h in halogen_bond_hits:

 dist1.append(h.constraints['DIST1'])

 ang1.append(h.constraints['ANG1'])

This will convert our data into a format that will allow us to easily plot DIST1 against ANG1.

9. We are now ready to plot our data using the scatterplot function from matplotlib:

plt.scatter(dist1, ang1)

plt.title('Aromatic iodine - pyridine halogen bond geometry')

plt.xlabel('DIST1')

plt.ylabel('ANG1')

plt.show()

10. To run the interaction_search.py script from the command prompt, you will first need to activate

your environment. Activation steps are covered in Steps 1-3 of Exercise 1.

Once you have activated your environment, change directory to where you saved your script, and

run it by typing:

python interaction_search.py

Here we have plotted DIST1 against ANG1 in a scatterplot, and we have added titles to the plot

itself as well as the axes. plt.show() should result similar to the following scatterplot being

shown:

PYAPI-002

8

Conclusions

The substructure search has allowed us to investigate the variation between I···N distance and C-I···N

angle in intermolecular halogen bonds between aromatic iodine and pyridine nitrogen. The plot we

have generated reveals that there is a weak negative correlation between these parameters – as the

contact distance becomes shorter the angle tends towards 180°.

The concept of substructure searching was illustrated here, along with search settings and constraints.

Additionally, we have covered how to generate scatterplots as well as some advanced Python

functionality. There are several other ways to perform substructure searches, as well as several

different search types, available in the CSD Python API that can be used to answer many complex

scientific questions.

You should now know how to use the CSD Python API to define a substructure search as well as how

to specify additional geometric and search criteria.

PYAPI-002

9

Full script

Note: if you copy and paste the script below, double check that the spacing is correct.

import matplotlib

matplotlib.use('TkAgg')

import matplotlib.pyplot as plt

import ccdc.search

ar_I_sub = ccdc.search.SMARTSSubstructure('Ic1ccccc1')

pyridine_sub = ccdc.search.SMARTSSubstructure('n1ccccc1')

halogen_bond_search = ccdc.search.SubstructureSearch()

ar_I_sub_id = halogen_bond_search.add_substructure(ar_I_sub)

pyridine_sub_id = halogen_bond_search.add_substructure(pyridine_sub)

halogen_bond_search.settings.only_organic = True

halogen_bond_search.settings.no_disorder = 'all'

halogen_bond_search.settings.max_r_factor = 5.0

halogen_bond_search.add_distance_constraint('DIST1',

 ar_I_sub_id, 0,

 pyridine_sub_id, 0,

 (0.0, 3.4),

 'Intermolecular')

halogen_bond_search.add_angle_constraint('ANG1',

 ar_I_sub_id, 1,

 ar_I_sub_id, 0,

 pyridine_sub_id, 0,

 (120.0, 180.0))

halogen_bond_hits = halogen_bond_search.search(max_hits_per_structure=1)

dist1 = []

ang1 = []

for h in halogen_bond_hits:

 dist1.append(h.constraints['DIST1'])

 ang1.append(h.constraints['ANG1'])

plt.scatter(dist1, ang1)

plt.title('Aromatic iodine - pyridine halogen bond geometry')

plt.xlabel('DIST1')

plt.ylabel('ANG1')

plt.show()

PYAPI-002

10

Example 2: Filtering the CSD to find organic hydrates.

Aim

For many purposes, it is often useful to generate subsets of the CSD. This case study shows how to

systematically search through the CSD to find a specific class of structure. It also shows how to apply

search filters outside of a conventional search operation.

Instructions
1. Open your preferred text editor and create a new Python file called hydrates_filter.py that we will

run from a command line later. The following steps show the code that you should write in your

Python file, along with explanations of what the code does.

2. We will start by importing the necessary modules for interrogating the CSD and for applying filters:

from ccdc import io, search

In order to read the CSD, we must make use of the ccdc.io module. To apply filters, we must

import the ccdc.search module. This is the syntax used if you need to import multiple modules

from the same library.

3. We want to specify some criteria that we can use to filter the CSD as we search through it. To do

this, we can make use of a ccdc.search.Search.Settings instance similar to the one that

we used in example 1 above:

settings = search.Search.Settings()

settings.only_organic = True

settings.not_polymeric = True

settings.has_3d_coordinates = True

settings.no_disorder = True

settings.no_errors = True

settings.max_r_factor = 7.5

Here, our filter indicates that we only want to return organic, non-polymeric structures that are

of high quality (with a crystallographic R-factor of 7.5 or less), without disorder and errors.

4. Next, we want to set up a counter to track our search and set up an EntryReader to search the

CSD:

count = 0

csd = io.EntryReader('CSD')

5. We will now set up our output file with an EntryWriter instance and begin iterating through the

CSD. It is often useful at this stage of a script to provide some feedback as to how it is progressing:

with io.EntryWriter('hydrates.gcd') as writer:

 for i, entry in enumerate(csd):

 if i % 10000 == 0:

 print('Found {} hydrates from {} entries...'.format(count,

i))

PYAPI-002

11

Remember that the indentations here are important! Using the with syntax here means that our

.gcd file (refcode list) will automatically close when the script is finished. The % is the modulo

operator, which returns the remainder of dividing one number by another. This block of code will

work through each entry in the CSD in turn and provide feedback for every 10,000 entries it has

assessed.

6. The final script will take anywhere from 1 to 2 hours to run depending on the speed of your

machine. To reduce the time to a few minutes for this workshop, we will add the following:

 # This block is only to save time. The entire check will take 1-

2 hours.

 if count > 200:

 break

 # end block

7. Next, we want check that the current CSD entry passes the criteria that we outlined above. Make

sure that this next piece of code is lined up under the last if statement so that it is part of the

correct block:

 if settings.test(entry):

 molecule = entry.molecule

 hydrate = False

Here we are testing the current entry against the criteria that we specified previously – if an entry

passes the test it will return True otherwise it will return False, and we can use this to decide

whether we want to carry out the next instructions or not. If the entry passes our test, we want

to start analysing the molecule object. We are also setting a flag at this stage that we will use later

when we are deciding if we have a hydrate or not.

8. We now want to check each component of the molecule object that we are investigating, and

check if we have any water molecules present in our structure. Again, make sure to check the

indentation of your code – these next lines should line up with the last lines we have written:

 for component in molecule.components:

 if component.smiles == 'O' and

component.all_atoms_have_sites:

 hydrate = True

Here we are iterating through each component in the current structure and checking its

corresponding SMILES string to identify any water molecules. We are also being particularly

stringent to make sure that the water molecules that we find have explicit hydrogen atom

positions – we want a high-quality data set! If the current entry contains a water molecule that

passes our test, we set our hydrate flag to True for the next step.

9. We want to write out the refcodes of any hydrated crystal structures that pass our test to our

refcode list. The indentation here should line up under the last for statement:

 if hydrate:

 writer.write(entry)

 count += 1

PYAPI-002

12

We now make use of our hydrate flag so that we can control which entries are written to the

output file. We also add one to our count for each entry that we write so that we can use this

count in our feedback loop to keep track of our progress.

10. Finally, at the end, we will print the number of hydrates we have found.

 print('Finished: Found {} hydrates from {} entries.'.format(count,

i))

11. Now run the hydrates_filter.py script from the command line. (For information on how to do so,

please see Example 1, step 10.) It should create a file, hydrates.gcd, in the directory you are

working in where all the results will be captured. As the script progresses, you should see a

feedback message displayed every 10,000 structures indicating how many entries that meet our

criteria have been found so far. If you run the complete script by removing the time saving block,

you should end up with at least 17,300 organic hydrates in your refcode list that you can use for

further analysis later.

Conclusions

Setting up filters has allowed us to search the CSD for organic hydrates, which we have captured in a

refcode list, or .gcd file.

The concept of iterating through entries in a database was introduced here, as well as using search

criteria to act as filters. Additionally, we have recapped how to produce output files.

While there are several standard filters that can be applied to searches, to answer more challenging

scientific questions using the CSD Python API it is possible to construct bespoke filters that are tailored

specifically to your needs.

You should now know how to use the CSD Python API to define criteria for search filters as well as

how to iterate through a structural database.

PYAPI-002

13

Full script

Note: if you copy and paste the script below, double check that the spacing is correct.

from ccdc import io, search

settings = search.Search.Settings()

settings.only_organic = True

settings.not_polymeric = True

settings.has_3d_coordinates = True

settings.no_disorder = True

settings.no_errors = True

settings.max_r_factor = 7.5

count = 0

csd = io.EntryReader('CSD')

with io.EntryWriter('hydrates.gcd') as writer:

 for i, entry in enumerate(csd):

 if i % 10000 == 0:

 print('Found {} hydrates from {} entries...'.format(count, i))

 # This block is only to save time. The entire check will take 1-2

hours.

 if count > 200:

 break

 # end block

 if settings.test(entry):

 molecule = entry.molecule

 hydrate = False

 for component in molecule.components:

 if component.smiles == 'O' and

component.all_atoms_have_sites:

 hydrate = True

 if hydrate:

 writer.write(entry)

 count += 1

 print('Finished: Found {} hydrates from {} entries.'.format(count, i))

PYAPI-002

14

Example 3: Tackling a scientific challenge using Python scripting.

Aim

The best way to learn either a scripting language, or a new programmatic interface, is to apply them

to a real scientific problem. This case study will aim to test your working knowledge of Python scripting

and the CSD Python API by setting a real scientific challenge for you to answer. In each case the

problem is addressable using only a standard installation of Python along with the CSD Python API but

could be tackled in several different ways.

Approach

Select one of the scientific challenges laid out below which appeals to you, perhaps something that is

aligned with your research area or simply something that interests you as a scientist in general. Making

use of the CSD Python API documentation, along with the hints provided and help from your fellow

workshop attendees, write a bespoke Python script to address the challenge chosen.

Scientific Challenges

1. When analysing crystal structures that appear to contain small voids, it is often useful to know for

reference the volume of space commonly occupied by a water molecule. Remove the block of

code starting with "# This block is only to save time." (through the line with "# end block"). Run

this script again to generate the full list of hydrates. Using this list, calculate the average volume

occupied by a water molecule in the CSD.

Hint – The following snippet of code shows how to manipulate the underlying molecule of a

crystal. Think of how you would identify the water atoms in each hydrated structure.

molecule = crystal.molecule

molecule.remove_atoms(molecule.atom(w.label) for w in water_atoms)

crystal.molecule = molecule

2. To create useful subsets of the CSD, you may wish to perform searches based on general

descriptions of molecules. Construct a subset of the CSD containing only molecules that have X

donors and Y acceptors, where X and Y are numbers of your choosing.

Hint – You may find it easier to iterate over the whole CSD entry by entry and then iterate over

the atoms in a molecule. Note that you probably also want to use only the heaviest molecule per

structure.

3. Is there a greater likelihood of significant void space in a crystal structure within some space

groups rather than others? To assess this, determine the median void space per structure as a

function of the space group number.

Hint – void space can only be calculated from the crystal object, using the space group number

will help to avoid confusions around space group symbols (for example, P21/c is the same as P21/n,

just a different setting).

Conclusions

You have now gained experience in writing scripts using the CSD Python API to tackle scientific

problems, as well as have a good working knowledge of the extent of the CSD Python API.

http://www.ccdc.cam.ac.uk/docs/csd_python_api

PYAPI-002

15

Workshop Conclusions
This workshop introduced the CSD Python API. You should now be familiar with:

• Accessing CSD entries through the CSD Python API.

• Conducting search for specific interactions in the CSD.

• Visualising search outputs in a plot.

• Saving search results in a refcode list (.gcd file).

• Creating search filters.

Next Steps
You can explore other workshop materials from the CSD-Core workshops section

(https://www.ccdc.cam.ac.uk/Community/educationalresources/workshop-materials/csd-core-

workshops/). If you are interested in continuing learning about the CSD Python API, a ligand-based

virtual screening workshop using the CSD Python API can be found in the CSD-Discovery workshops

section (https://www.ccdc.cam.ac.uk/Community/educationalresources/workshop-materials/csd-

discovery-workshops/).

Feedback
We hope this workshop improved your understanding of the CSD Python API and you found it useful

for your work. As we aim at continuously improving our training materials, we would love to get your

feedback. Click on this link to a survey, it will take less than 5 minutes to complete. The feedback is

anonymous. You will be asked to insert the workshop code, which for this self-guided workshop is

PYAPI-002. Thank you!

Glossary
Refcode list or .gcd file – a file containing a list of CSD Refcodes. This file can be opened in various

CCDC applications.

SMARTS string - a way of describing a chemical substructure using letters, numbers and symbols. If

you are unfamiliar with SMARTS strings, you can visualise them and learn more about the format

with SMARTSviewer (http://smartsview.zbh.uni-hamburg.de/).

SMILES – Simplified Molecular Input Line Entry System; a chemical notation for describing the
structure of chemical species using short strings.

Substructure – A substructure is a part or section of a whole molecule. When used in a search using

the CSD Python API, the substructure can be identified within other molecules.

https://www.ccdc.cam.ac.uk/Community/educationalresources/workshop-materials/csd-core-workshops/
https://www.ccdc.cam.ac.uk/Community/educationalresources/workshop-materials/csd-core-workshops/
https://www.ccdc.cam.ac.uk/Community/educationalresources/workshop-materials/csd-discovery-workshops/
https://www.ccdc.cam.ac.uk/Community/educationalresources/workshop-materials/csd-discovery-workshops/
https://www.surveymonkey.co.uk/r/CCDC-Online-Workshop
http://smartsview.zbh.uni-hamburg.de/

