Analysing Porous Materials in Mercury (MER-006)

Developed using 2023.2 CSD Release (CSD 5.44 + 2 data updates)

Table of Contents

ntroduction	. 2
Learning Outcomes	. 2
Pre-required Skills	. 2
Materials	. 2
Example 1. Analysing void space using Pore Analyser	. 3
Conclusion	. 6
Exercises	. 7
Summary	. 8
Next Steps	. 8
Feedback	. 8
Exercise discussion	. 9
Glossary	10
Basics of Mercury Visualization	13

Introduction

Mercury is the visualisation and analysis software of the Cambridge Structural Database (CSD). Mercury not only allows for flexible structure visualisation but provides an interface to a wealth of tools for calculating structure properties. One such tool is the Pore Analyser, which facilitates calculation of pore properties, including geometric and network-accessible volumes, maximum pore and pore-limiting diameter, and network dimensionality.

In this workshop, we will use Mercury's Pore Analyser to explore the void properties of a Metal-Organic Framework structure.

Learning Outcomes

After completing this workshop, you will be able to:

- Run a Pore Analyser calculation on a structure from the CSD and interpret the results.
- Edit a structure in Mercury.
- Visualise void space in a porous material.

This workshop will take approximately **25** *minutes* to be completed. The words in <u>Blue Italic</u> in the text are reported in the <u>Glossary</u> at the end of this handout.

Pre-required Skills

Basic familiarity with Mercury is required. You can find a brief <u>summary guide</u> at the end of the handout.

Materials

No additional materials are required for this workshop.

Example 1. Analysing void space using Pore Analyser

- 1. Open Mercury from the start menu or by clicking the W Mercury icon from the desktop.
- 2. In the **Structure Navigator**, scroll down to CSD Entry VITKUG (a <u>Metal-Organic</u> <u>Framework</u> structure) and click on the <u>refcode</u> or type it into the navigator to bring up the structure. This crystal structure consists of three parts (i) the framework based on $[C_6H_2(COO)_4]^{4-}$ and OH⁻ bridged Cu²⁺ centres, (ii) the diammonium $[H_3N-(CH_2)_6-NH_3]^{2+}$ counterion and (iii) water of crystallisation.
- 3. From the top menus, select *Calculate > Pore Analyser*.
- Press Calculate and allow the calculation to run. Scroll through the results of the calculations. You will notice that certain values, such as the <u>Networkaccessible surface area</u> (0.00 Å²) and <u>Network-accessible helium volume</u> (28.02 Å³) are small.

- 5. Click **Save as** to save the results as a CSV file which can be opened in a spreadsheet program such as Excel.
- 6. We can edit the structure to calculate what properties the void space might have with or without certain components. Right click on a framework atom and choose *Selection > Select Molecule*. The selected atoms will be highlighted yellow.
- 7. Right click on the selected molecule and choose *Selection > Invert Selection*. The diammonium cation and water will be highlighted but not the framework.
- 8. From the top-level menus, select Edit > Edit Structure...
- 9. Within the Remove area, click Selected Atoms and click Close.
- 10. Repeat **Steps 3–5** again and explore the Pore Analyser results. You should see that the network-accessible surface areas and helium volumes have increased significantly. Make sure you save the calculation results.

Auto Edit Manual Edit Bo	nd Distance Limit Edit
Click on a bond to change its type	<u>.</u>
Structure has 20 bonds of unknow	vn type.
Add	
Atoms	C
	Tetrahedral sp3
Hydrogen Atoms	1
Bonds	Single
Edit	
Set Element Type to	C
Update Labels Automatically	
Set Atom Label	
Set Atom Charge	0
Set Bond Type to	Single
Remove	
Atoms & Bonds	All Hydrogens
Molecules	All Formal Charges
Selected Atoms	

5

- 11. A cation-free structure would not be chemically possible; to undo the structure editing, press **Ctrl + Z** or select *Edit > Undo: Remove Atoms* from the top menus.
- 12. Click on the lasso icon 🔊 water molecules to select them.

from the top toolbar and drag around the

13. Repeat **Steps 8–9** to delete the 3 water molecules.

14. Run Pore Analyser again by repeating **Steps 3–5** on the edited structure. The values reported are relevant to the physical process of dehydration and may help you to understand the impact that such a process would have upon the stability of the structure.

Core CSD-Materials CSD-Theory	CSD-Pa 😵 Edit Structure		>
nents 2 Publication	All ato Auto Edit Manual Edit Bond	Distance Limit Edit	
x- x+ y- y+ z- z+ x-90 x	c+90 y Click to remove all selected atoms.		
	Structure has 20 bonds of unknown	type.	
1	Add		
	Atoms	C	~
<u> </u>		Tetrahedral sp3	~
9	Hydrogen Atoms	1	*
	Bonds	Single	~
	Edit		
	Set Element Type to	С	~
	Update Labels Automatically		
	Set Atom Label		
	Set Atom Charge	0	*
	Set Bond Type to	Single	\sim
	Remove		
	Atoms & Bonds	All Hydrogens	
	Molecules	All Formal Charges	
		_	

) P	ore	Analyser			
urre	ent S	Structure: VITKUG		Ca	alculate
s	how	advanced options			
[Parameter	Result	Unit	^
	5	Total surface area per volume	9.38	m²/cm³	
	6	Total surface area per mass	5.81	m²/g	
	7	Network-accessible surface area	0.00	A²	
8 Network-accessil		Network-accessible surface area per volume	0.00	m²/cm³	
	9 Network-accessible surface area per mass		0.00	m²/g	
	10	Total helium volume	390.576	A³	
	11	Total helium volume	0.130	cm³/g	
	12 Total geometric volume 13 Total geometric volume		748.709	A ³	
			0.249	cm³/g	
14 Network-accessibl		Network-accessible helium volume	390.576	A³	
	15 Network-accessible helium volume		0.130	cm³/g	
16 Ne		Network-accessible geometric volume	748.466	A³	
	17	Network-accessible geometric volume	0.249	cm³/a	\sim

11

12

Eait	Selection Display Ca	iculate	CSD-Comm
	Undo: Remove Atoms		Ctrl+Z
	Redo: Deselect All		Ctrl+Y
	Copy Image to Clipboar	d	Ctrl+C
	Edit Structure		
	Auto Edit Structure		
	Edit Bond Distance Limit	s	
	Normalise Hydrogens		

- 15. To visualise the *void* space, tick **Packing** in the *Display Options* toolbar.
- 16. From the top-level menus, choose *Display > Voids...* and in the **Voids** window, click Apply. The result should look as shown below.

Note: the voids displayed in Mercury may not always reflect the result of the Pore Analyser calculation because of differences in probe definitions.

Conclusion

In this example, we used Pore Analyser to probe the void properties of one search hit and identify changes in pore properties that are predicted to accompany dehydration. It was found that the predicted network-accessible surface area did not change upon removal of water, however, the network-accessible helium volume did change substantially, and this was accompanied by a change in void dimensionality. This might lead to increased porosity and the ability for the structure to accommodate other small molecules.

Display Options	
Packing Short Contact	
Auto centre	
Poset	
Nesel	
Press the left mouse button and move the	
n Display Calculate CSD-Comr	×
Atc Styles	
Labels	
C Colours c Find any emp	ty spaces (voids) in crystal unit cells that are big
Show/Hide enough to hol	d a spherical "probe" of the given radius. Decrease the
More Information	is to find smaller spaces. Decrease the Grid Spacing other surfaces. To see voids in more than one unit cell,
Symmetry Elements	ing/Slicing dialog to turn on packing and increase the
Voids	a, b and c.
Display Options	
Manage Styles	
View along Probe Radi	ius: 1.2 Å
Dial box	
Approx. G	0.3 A
Splash screen Calculate u	sing the Contact Surface ~
Display Opt	tions
Outside Co	lour:
Inside Co	lour: 💻 👖 1
Results	
	96 of upit cell volume
Volume	% of unit cell volume
	ų
Defaults	
	OK Apply Cancel

Display Optio

15

16

Exercises

- 1. Investigate the hydrogen bonding interactions of the hexane-1,6diammonium cation in the structure. To do so, tick **H-Bond** in **Display Options**, then click on the hanging red lines to expand the contacts.
- 2. Investigate how the pore properties would change if the hexane-1,6diammonium cation was replaced by two methylammonium ions, the structure being otherwise identical. *Hint: you will need to remove the highlighted atoms using Edit Structure (and add the missing hydrogen atom to each of the resulting methylammonium ions).*

Summary

In this workshop, we have learnt how to explore the void properties in a MOF using the Pore Analyser tool in Mercury. You should now be able to:

- Run a Pore Analyser calculation in Mercury.
- Edit a structure in Mercury.
- Visualise void space in Mercury.

For your reference, you can consult the <u>Mercury</u> user guide.

Next Steps

If you have enjoyed this workshop, you can find self-guided workshops on more functionality in Mercury <u>here</u>. In particular, you might like to try workshop CQ-005, "Searching and Analysing Metal-Organic Structures Using ConQuest and Mercury", which gives guidance on how to search for metal-organic structures of the type used in this workshop. You might also like to try our on-demand module on <u>Visualization in Mercury</u> or explore instructional videos on functionality such as Pore Analyser on our <u>YouTube channel</u>.

Feedback

We hope this workshop improved your understanding of Mercury's Pore Analyser and you found it useful for your work. As we aim to continuously improve our training materials, we would love to hear your feedback. Follow <u>the link</u> on the workshop homepage and insert the workshop code, which for this self-guided workshop is *MER-006*. It will only take 5 minutes and your feedback is anonymous. Thank you!

Exercise discussion

1. A close look at the structure shows that each N-H hydrogen is involved in a hydrogen bond; two of these are to water molecules and the third is to an oxygen of the carboxylate group of a linker molecule. Both ammonium groups of the di-cation are involved in this way, spanning the channels.

 Overall, editing the structure to replace hexane-1,6-diammonium with two methylammonium ions has no effect on the surface areas, which still remain at zero. On the other hand, the network-accessible helium volume has increased nearly 10-fold, to 279.882 Å³.

Glossary

Metal-Organic Frameworks (MOFs)

A metal-organic framework, abbreviated to a MOF, is a coordination network with organic ligands containing potential voids. In the CSD MOF subsets, each subset with a particular dimensionality (1D, 2D or 3D) also includes coordination polymers and coordination networks of the same dimensionality. In these subsets, the identified MOFs are not restricted to adsorption applications; therefore, 1D, 2D, and 3D MOF and MOF-like structures with all kinds of pore sizes as well as nonporous structures are included. Further information can be found in S. R. Batten, N. R. Champness, X-M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Öhrström, M. O'Keeffe, M. P. Suh and J. Reedijk, *Pure Appl. Chem.*, 2013, **85**, 1715-1724, and P. Z. Moghadam, A. Li, S. B. Wiggin, A. Tao, A. G. P. Maloney, P. A. Wood, S. C. Ward and D. Fairen-Jimenez, *Chem. Mater.*, 2017, **29**, 2618-2625.

Figure of a MOF, FAWCEN03, ZIF-8.

Pore Analyser

Pore Analyser is the CSD tool for void space analysis. A pore analyser calculation reports several results including:

- System volume, mass, and density.
- Surface area, given as both total and network-accessible parameters.
 - The network accessible value considers if the probe can access the void space within a structure.
 - The total surface area will include isolated void space (closed porosity).
- Volume parameters: helium and geometric volumes differ by considering the size and interactions of the probe atom.
- Pore sizes:
 - The Pore limiting diameter value describes the largest sphere than can percolate through the void network.
 - The maximum pore diameter gives the diameter of the largest sphere that can fit in void space of the structure.
- The number of percolated dimensions:
 - Values range from 0 (isolated pores) to 3 (network of channels or layers).

nt Str Show	ucture: AKUKUO advanced options		Calcı	ilate
	Parameter	Result	Unit	^
2	System Mass	1150.714	g/mol	
3	System Density	1.392	g/cm ⁸	
4	Total surface area	58.51	A²	
5	Total surface area per volume	426.22	m²/cm³	
6	Total surface area per mass	306.21	m²/g	
7	Network-accessible surface area	58.51	A²	
8	Network-accessible surface area per volume	426.22	m²/cm³	
9	Network-accessible surface area per mass	306.21	m²/g	
10	Total helium volume	452.698	A³	
11	Total helium volume	0.237	cm³/g	
12	Total geometric volume	565.810	A ³	
13	Total geometric volume	0.296	cm³/g	
14	Network-accessible helium volume	452.697	A ³	
15	Network-accessible helium volume	0.237	cm³/g	
16	Network-accessible geometric volume	565.193	A³	
17	Network-accessible geometric volume	0.296	cm³/g	
18	Pore limiting diameter	4.25	А	
19	Maximum pore diameter	4.81	А	
20	Number of percolated dimensions	1	Dimension	~
			Save as	

The Pore Analyser results table.

Refcode

A refcode is a CSD entry identifier comprising six letters e.g. ABACOF. Two digits identifying additional structure determinations e.g. ABACOF03.

Voids

The overall volume of a crystal structure can be partitioned into occupied 'network' and unoccupied void space. The Voids feature in Mercury displays any empty space that is big enough to contain a spherical 'probe' of a given radius.

A metal-organic framework structure, VITKUG, with voids displayed.

Basics of Mercury Visualization

Mercury is the CCDC's visualization software to view 3D structures of small molecules, generate images, and animations of molecules.

In the following we will see some of the basics of navigation and visualization in Mercury that you will find helpful to support your analysis.

In the Mercury interface we find:

- At the top: list of menus from which we can access visualization and analysis options, and other CSD components such as CSD-Materials.
- On the right-hand side: the Structure Navigator, with the database loaded (depending on your licence). The Structure Navigator allows you to select a refcode to visualize in the main Mercury window.
- Beneath the main display window: Display options toolbar. You can quickly view a packing diagram, display Hydrogen bonding and detailed information about the molecule using the More Info option.

Using the mouse to enhance visualization:

- Left mouse button and move rotate molecules.
- Middle Mouse wheel move molecules up and down.
- Right mouse button and move up and down zoom in and out of molecules.
- Shift + Left mouse button and move rotate in the plane molecules.
- Ctrl + Left mouse button and move translate molecules.

Right click:

- a) Near a molecule and
- b) Away from a molecule

AABHTZ (P-1) - Mercury

File Edit Selection Display Calculate CSD-Community CSD-Core CSD-Materials CSD-Theory CSD-Particle CSD-Discovery CSD Python API Help

AABHTZ (P-1) - Mercury				Structure	Navigator		đΧ
File Edit Selection Display Calculate	CSD-Community CSD-Core CSD-Materia	Is CSD-Theory CSD-Particle CSD-Discovery CSD P	thon API Help	AABHTZ			Find
Style: Ball and Stick ~ Colsur: by Element Animate Default view: b ~	Manage Styles Work	Atom selections: ✓ Select by SMARTS: [c] z+ x:90 x+90 y-90 y+90 z+90 z+90 ← → ↓ ↑	200m- 200m+	Crystal St	ructures	Spacegroup	^
					AABHTZ	P-1	
					AACANI10	P21/c	
					AACANI11	P21/c	
					AACFAZ	Pbcn	
					AACFAZ10	Pbcn	
					AACMAL	P21/c	
					AACMHX10	Pbca	
		······································			AACRHA	Pncm	
			6		AACRHC	P-1	
) . ••		AACRUB	Cc	
					AACRUB01	C2/c	
					AADAMC	P21/c	
					AADMPY	P-1	
					AADMPY10	P-1	
					AADRIB	P21	
					AAGAGG10	P212121	
					AAGGAG10	P21	~
Display Options				_	<<	>>	
Display			Options			¢	,
splay Options							5
Display				Options			
Packing		< (sum of vd\M radii)	Contacts	Shov	v hydrogens	Depth cue	
Acummetric Unit				Cher	u coll avec		
	H-Bond	Default definition	More Info 🔻		v cen axes		
Auto centre				Labe	l atoms	Stereo	
			Powder				
Reset							

